Planning-碰撞检测之分离轴定理(SAT)

本文详细介绍了分离轴定理(SAT),一种用于检测两个凸多边形是否相交的算法。通过遍历每个凸多边形边的法向量作为分离轴,计算投影并检查是否有重叠来确定相交情况。同时,文中还阐述了如何计算最小翻译向量(MTV),即使两个相交的凸多边形分开所需的最小距离和方向。该方法在游戏开发和物理模拟等领域有广泛应用。
摘要由CSDN通过智能技术生成

原文:dyn4j-SAT (Separating Axis Theorem)

sat(分离轴定理)用来检测两个凸多边形是否相交,也可以用于检测点是否在凸多边形内。凸多边形内的点的连线上的点都在凸多边形内,或者连线只和图多边形相交两次(边界处)。
在这里插入图片描述在这里插入图片描述

1. 原理

如果凸多边形在某个轴上的投影不重叠,则两个凸多边形不相交。需要对所有的轴(每个边的法向量)进行投影,存在一个轴上的投影不相交,则两个凸多边形不相交。如果所有轴上的投影都相交,则多边形相交。
在这里插入图片描述在这里插入图片描述

Axis[] axes = // get the axes to test
// loop over the axes
for (int i = 0; i < axes.length; ++i) {
    Axis axis = axes[i];
    // project both shapes onto the axis
    Projection p1 = shape1.project(axis);
    Projection p2 = shape2.project(axis);
    // do the projection overlap?
    if (!p1.overlap(p2)) {
        // the we can gurantee that the shapes do not overlap
        reture false;
    }
}
// if we get here then we know that every axis had overlap on it 
// so we can guarantee an intersection
return ture;

2. 分离轴

分离轴是凸多边形每个边的法向量。做碰撞检测的两个凸多边形的所有边都需计算其法向量。如果只需要计算两个凸多边形是否碰撞,则分离轴不需要归一化;如果需要计算 M T V MTV MTV( M i n i m u m Minimum Minimum T r a n s l a t e Translate Translate V e c t o r Vector Vector,使两个凸多边形不碰撞的最小向量长度),则分离轴必须归一化。

Vector[] axes = new Vector[shape.vertices.length]
// loop over the vertices
for (int i = 0; i < shape.vertices.length; ++i) {
    // get the current vertex
    Vector p1 = shape.vertices[i];
    // get the next vertex
    Vector p2 = shape.vertices[i + 1 == shape.vertices.length ? 0 : i + 1];
    // subtract the two to get the vector
    Vector edge = p1.subtract(p2);
    // get either perpendicular vector
    Vector normal = edge.perp();
    // the perp method is just (x, y) => (-y, x) or (y, -x)
    axes[i] = normal;
}

3. 凸多边形在分离轴的投影

计算凸多边形所有顶点与分离轴的点乘,其最大值和最小值就是凸多边形在分离轴上的投影

double min = axis.dot(shape.vertices[0]);
double max = min;
for (int i = 1; i < shape.vertices.length; ++i) {
    // NOTE: the axis must be normalized to get accurate projections
    double p = axis.dot(shape.vertices[i]);
    if (p < min) {
        min = p;
    } else if (p > max) {
        max = p;
    }
}
Projection proj = new Projection(min, max);
return proj;

4. 计算MTV

如下图所示,两个凸多边形在边 b 3 b3 b3法向量(分离轴)上重叠的区域最少,沿此方向可以移动最小的距离使两个碰撞的凸多边形分开,此向量方向和移动的距离叫做 M T V MTV MTV
在这里插入图片描述

double overlap = DBL_MAX;
Axis samllest = null;
Axis[] axes1 = shape1.getAxes();
Axis[] axes2 = shape2.getAxes();
for (int i = 0; i < axes1.length; ++i) {
    Axis axis = axies1[i];
    Projection p1 = shape1.project(axis);
    Projection p2 = shape2.project(axis);
    if (!p1.overlop(p2) {
        return flase;
    } else {
        double o = p1.getOverlap(p2);
        if (o < overlap) {
            overlap = o;
            samllest = axis;
        }
    }
}
for (int i = 0; i < axes2.length; ++i) {
    Axis axis = axes2[i];
    Projection p1 = shape1.project(axis);
    Projection p2 = shape2.project(axis);
    if (!p1.overlap(p2)) {
        retrun false;
    } else {
        double o = p1.getOverlap(p2);
        if (o < overlap) {
            overlap = o;
            smallest = axis;
        }
    }
}
MTV mtv = new MTV(smallset, overlap);
return ture;

在这里插入图片描述

if (!p1.overlap(p2)) {
    retrun false;
} else {
    double o = p1.getOverlap(p2);
    // check for containment
    if (p1.contains(p2) || p2.contains(p1)) {
        // get the overlap plus the distance from the minimum end points
        double mins = abs(p1.min - p2.min);
        double maxs = abs(p1.amx - p2.max);
        // NOTE: depending on which is smaller you may need to negate the separating axis!!
        if (mins < maxs) {
            o += mins;
            axis = -axis; // negate the separating axis
        } elst {
            o += maxs;
        }
    }
    // check for minimun
    if (o < overlap) {
        overlap = o;
        smallest = axis;
    }
}
### 回答1: 3d-grid-path-planning-master是一个三维网格路径规划的项目。路径规划是指通过算法找到从起点到终点的最优路径。而三维网格路径规划则是在三维空间中进行路径规划。 该项目可能是一个基于Python或其他编程语言的代码库,用于实现三维网格路径规划算法。它可能包含以下功能: 1. 输入:该代码库可能接受三维空间中的起点和终点坐标,以及其他必要的参数和约束条件。 2. 网格生成:根据给定的三维空间范围和分辨率,该代码库可能生成一个三维网格,将空间划分为多个小格子。 3. 障碍物处理:根据提供的障碍物信息,在网格中标记障碍物的位置。这有助于避免路径经过障碍物。 4. 路径搜索算法:该代码库可能实现了一种路径搜索算法,如A*算法或Dijkstra算法,用于在生成的网格中找到从起点到终点的最优路径。 5. 可视化:该代码库可能提供了可视化功能,通过图形界面显示生成的网格和找到的路径,以便用户查看和理解。 通过该项目,用户可以使用提供的代码库来规划三维空间中的路径。它可以应用于无人机的路径规划、机器人的导航等各种场景。用户可以自定义起点、终点和障碍物信息,同时可以根据自己的需求和约束条件进行参数设置,从而实现最佳路径的规划。 总而言之,3d-grid-path-planning-master是一个实现三维网格路径规划算法的项目,通过该项目可以帮助用户在三维空间中找到最优路径。 ### 回答2: 3D-Grid-Path-Planning-Master是一个用于路径规划的项目。它主要应用于三维环境中的路径规划问题,例如在无人机飞行或机器人导航等领域。 该项目利用3D网格进行路径规划。3D网格将三维空间划分为多个离散的网格单元,每个单元代表一个小的空间区域。每个单元可以是可通过的或者不可通过的,以表示障碍物或自由空间。在路径规划中,我们需要找到一个从起点到目标点的最短路径,同时避开障碍物。 3D-Grid-Path-Planning-Master提供了一系列算法和函数,以实现路径规划的功能。它包括生成三维网格地图、设定起点和目标点位置、标记障碍物、计算最短路径等操作。 首先,我们可以通过读取地图数据或手动输入来生成一个3D网格地图。接下来,我们需要设定起点和目标点的位置,可以通过坐标或索引的方式进行设定。然后,我们可以使用算法来计算从起点到目标点的最短路径。常用的算法包括A*算法、Dijkstra算法等。这些算法会根据网格单元之间的距离、代价和障碍物来确定路径。 在路径规划完成后,我们可以获得一条最优路径,以及路径的长度和代价。还可以可视化地显示路径,方便用户观察和验证结果。 总的来说,3D-Grid-Path-Planning-Master是一个功能强大的路径规划工具,适用于在三维环境中寻找最短路径的问题。它可以帮助无人机和机器人等设备在复杂的三维空间中进行导航和规划,提高其自主性和效率。 ### 回答3: 3d-grid-path-planning-master是一个基于三维网格的路径规划算法。该算法旨在通过在三维空间中的网格中搜索最佳路径,帮助机器人或其他设备规划路径。 在该算法中,三维空间被划分为网格,每个网格单元都有一个特定的状态。包括空闲的、占用的或不可达的状态。这表示了机器人是否可以在该位置移动。此外,还可以将其他信息添加到每个网格单元,如代价值或距离等。 路径规划的过程是通过搜索算法来完成的。常用的搜索算法可以是A*算法或Dijkstra算法。这些算法通过评估每个网格单元的代价来决定下一步的移动方向。代价可以根据网格单元之间的距离、障碍物的存在以及其他定义的因素来计算。 在执行路径规划之前,需要定义起点和终点。算法根据起点和终点之间的几何关系确定搜索的方向。通常,算法会从起点开始搜索,尝试找到一条能够到达终点的最短路径。搜索过程中,算法会不断更新每个网格单元的代价值,并选择具有最低代价的网格单元作为下一步的移动方向。 当搜索到达终点或无法继续搜索时,路径规划算法会返回找到的路径。该路径可以根据需要进行优化或修改,以适应特定的需求。最终,路径规划算法可以帮助机器人或其他设备在三维空间中找到最佳的路径,并通过避开障碍物和多余的移动来提高效率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值