AI Ollama 下载和安装

Ollama是一款可以在macOS、Linux和Windows系统上运行的跨平台工具,它帮助用户快速在本地运行大模型,极大地简化了在Docker容器内部署和管理LLM(大型语言模型)的过程。以下是Ollama的下载和安装步骤:

一、下载Ollama

  1. 访问官网:
    打开浏览器,访问Ollama官网
  2. 选择操作系统:
    在Ollama官网的下载页面,选择适合自己操作系统的版本。对于Windows用户,点击“Windows”选项卡。
  3. 下载Ollama:
    点击“Download for Windows (Preview)”按钮,开始下载Ollama的安装包。请确保您的系统版本是Windows 10或更高版本。

二、安装Ollama

  1. 运行安装包:
    下载完成后,双击.exe安装包文件,开始安装过程。
  2. 安装路径:
    Ollama默认会安装在C盘,路径通常为C:\Users%username%\AppData\Local\Programs\Ollama。请注意,目前无法自定义安装路径,因此请确保C盘有足够的空间。
  3. 完成安装:
    按照安装向导的提示完成安装过程。安装完成后,您可以在开始菜单中找到Ollama,或者在桌面右下角的状态栏中看到Ollama的图标。

三、配置Ollama(可选)

  1. 修改模型存储路径:
    Ollama默认将模型存储在C盘。为了节省C盘空间或提高访问速度,您可以修改模型的存储路径。右键点击Ollama图标,退出Ollama,然后打开“系统环境变量”,新建一个系统变量OLLAMA_MODELS,并设置为您希望的模型存储路径。
  2. 修改API访问地址和端口:
    Ollama API的默认访问地址和侦听端口是http://localhost:11434。如果您需要在网络中提供服务,请修改API的侦听地址和端口。在系统环境变量中设置相应的变量值即可。
  3. 允许浏览器跨域请求:
    如果您计划在其它前端面板中调用Ollama API(如Open WebUI),建议放开跨域限制。可以新建一个系统变量OLLAMA_ORIGINS,并设置变量值为*。

四、启动和运行Ollama

  1. 启动Ollama:
    在开始菜单中找到Ollama,并点击启动。或者右键点击桌面右下角的Ollama图标,选择“启动”。
  2. 查看Ollama命令:
    以管理员身份运行Windows Powershell,执行ollama命令来查看Ollama的帮助信息和可用命令。
  3. 下载并运行大模型:
    执行ollama list命令可以查看当前安装的大模型列表。如果需要下载新的大模型,可以前往Ollama模型库选择合适的模型,并执行相应的安装命令。例如,执行ollama run [modelname]命令来下载并运行指定的大模型。
  4. 验证安装:
    为了验证Ollama是否启动成功,可以在浏览器中访问http://127.0.0.1:11434/(或您设置的API端口)。如果显示“Ollama is running”,则说明Ollama已成功启动。
    通过以上步骤,您就可以完成Ollama的下载、安装和配置,并开始使用Ollama来运行大型语言模型了。请注意,在使用过程中,如果遇到任何问题或疑问,可以查阅Ollama的官方文档或寻求社区的帮助。

五、安装

  1. 安装界面
    在这里插入图片描述
  2. 安装成功界面:
    在这里插入图片描述

六、安装模型

(一)阿里通义千问模型

1、从仓库中查询自己需要的模型:https://ollama.com/library
在这里插入图片描述

  1. 在线安装
# 下载模型
ollama pull qwen
# 运行模型
ollama run qwen
  1. 离线部署
    需要离线服务 模型文件,生成Modelfile,在服务环境上传即可
# 查看模型Modelfile
ollama show --modelfile qwen
# 创建模型
ollama create your-model-name -f ./Modelfile 
  1. 根据Modelfile内容查看模型具体位置,并上传到服务器b,保存Modelfile,并修改FROM子句,修改为自己模型位置。
  2. 执行create命令

(二)llama3.2

命令行

  ollama run llama3.2

执行效果:
在这里插入图片描述

七、调用

1. 接口调用

Windows

curl http://localhost:11434/api/chat -d "{\"model\":\"llama3.2\",\"messages\":[{\"role\":\"user\",\"content\":\"What are God Particles?\"}],\"stream\":false}"

在这里插入图片描述

2. Python调用

import ollama

response = ollama.chat(
    model="llama3.2",
    messages=[
        {
            "role": "user",
            "content": "Tell me an interesting fact about elephants",
        },
    ],
)
print(response["message"]["content"])

在这里插入图片描述

3. Spring Ai

  1. pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.2</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.example</groupId>
    <artifactId>ollama</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>spring-ai-ollama</name>
    <description>spring-ai-ollama</description>
    <properties>
        <java.version>17</java.version>
        <!--        快照版本-->
        <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>

    </dependencies>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>${spring-ai.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
        </plugins>
    </build>
    <!--    快照版本-->
    <repositories>
        <repository>
            <id>spring-snapshot</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>
</project>
  1. yaml配置
spring:
  ai:
    ollama:
      base-url: localhost:11434
  1. 业务代码
@Slf4j
@RestController
@AllArgsConstructor
@RequestMapping("/mind-mark")
public class ChatController {
/**
     * 文本
     */
    @GetMapping("chat")
    public String chat(@RequestParam(value = "msg", defaultValue = "") String msg) {
        if (msg == null || msg.trim().isEmpty()) {
            return "对话消息不能为空。";
        }
        return chatClient
                .prompt()
                .user(msg)
                .call()
                .content();;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小工

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值