卷积之后图像的大小计算公式

文章讨论了在卷积神经网络(CNN)中,如何处理非正方形输入图像,通过使用3x3filter和padding=1,确保输出图像尺寸不变的过程,利用公式(out_size=(input_size-kernel_size+2*padding)/strides+1)进行计算。
摘要由CSDN通过智能技术生成

对于大部分CNN网络,输入图像是NN的形状,矩形也会进行填充变成正方形。
对于我的输入
480
480的单通道灰度图
经过64个filter
每个大小都是3*3
padding=1
nn.Conv2d(1, 64, kernel_size=3, padding=1)
输出图像的大小仍不变
公式如下:

out_size = (input_size - kernel_size + 2*padding) / strides + 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值