地址:
力扣https://leetcode-cn.com/problems/champagne-tower/
题目:
我们把玻璃杯摆成金字塔的形状,其中 第一层 有 1 个玻璃杯, 第二层 有 2 个,依次类推到第 100 层,每个玻璃杯 (250ml) 将盛有香槟。
从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)
例如,在倾倒一杯香槟后,最顶层的玻璃杯满了。倾倒了两杯香槟后,第二层的两个玻璃杯各自盛放一半的香槟。在倒三杯香槟后,第二层的香槟满了 - 此时总共有三个满的玻璃杯。在倒第四杯后,第三层中间的玻璃杯盛放了一半的香槟,他两边的玻璃杯各自盛放了四分之一的香槟,如下图所示。
现在当倾倒了非负整数杯香槟后,返回第 i 行 j 个玻璃杯所盛放的香槟占玻璃杯容积的比例( i 和 j 都从0开始)。
示例 1:
输入: poured(倾倒香槟总杯数) = 1, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.00000
解释: 我们在顶层(下标是(0,0))倒了一杯香槟后,没有溢出,因此所有在顶层以下的玻璃杯都是空的。
示例 2:
输入: poured(倾倒香槟总杯数) = 2, query_glass(杯子的位置数) = 1, query_row(行数) = 1
输出: 0.50000
解释: 我们在顶层(下标是(0,0)倒了两杯香槟后,有一杯量的香槟将从顶层溢出,位于(1,0)的玻璃杯和(1,1)的玻璃杯平分了这一杯香槟,所以每个玻璃杯有一半的香槟。
示例 3:
输入: poured = 100000009, query_row = 33, query_glass = 17
输出: 1.00000
提示:
0 <= poured <= 10^9
0 <= query_glass <= query_row < 100
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/champagne-tower
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
与现实世界的香槟塔不同,只有平面的,当某个被子满了(只能装1.0),多余部分 一分为二平均分给它的下一层
某个元素 [i][j] 代表第 i 层 第 j 个杯子
观察下层级的关系,可以发现:
1. 其关联的下一层的杯子一定是 [i+1][j] 和 [i+1][j+1]
2. 每一层的杯子个数就是当前层数(当然我们这里以 0 层开始,代表的就是第一层)
我们需要判断溢出部分,平均分配后就是下一层关联杯子的流入
这样依次累计遍历即可
最后考虑溢出情况,如果没有溢出就是计算的值,否则就是1.0
方法一、动态规划
初始 [0][0] 即倒入的杯数,溢出部分平均即下一层关联的值
double champagneTower(int poured, int query_row, int query_glass){
int i,j;
double **glass = (double **)malloc(sizeof(double *) * 100);
for(i=0; i<100; i++)
glass[i] = (double *)malloc(sizeof(double) * 100);
for(i=0; i<=query_row; i++)
for(j=0; j<=i; j++)
glass[i][j] = 0.0;
glass[0][0] = poured;
for(i=1; i<=query_row; i++)
{
for(j=1; j<=i; j++)
{
double k = (glass[i-1][j-1] - 1.0) / 2;
if(k > 0)
{
glass[i][j-1] += k;
glass[i][j] += k;
}
}
}
double ca = glass[query_row][query_glass];
for(i=0; i<100; i++)
free(glass[i]);
free(glass);
return fmin(1.0, ca);
}