本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!
专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html
文章目录
雾霾环境下物体检测的优化方法:结合AOD-PONO-Net去雾与YOLOv8改进
1. 引言
图像去雾(Image Dehazing)是计算机视觉领域中的一个重要问题,尤其是在户外场景中,雾霾天气会严重影响图像质量,进而影响物体检测、分割等任务的精度。YOLOv8作为当前主流的物体检测算法之一,其性能在良好条件下表现出色,但在雾霾等低质量图像上往往存在较大误差。因此,如何将图像去雾技术与YOLOv8物体检测结合起来,成为了一个具有挑战性且极具应用潜力的方向。
本篇文章将深入探讨如何利用AOD-PONO-Net(AOD-Net的改进版)网络,结合YOLOv8改进图像物体检测的性能,特别是在去雾场景中的应用。AOD-PONO-Net通过对图像进