雾霾环境下物体检测的优化方法:结合AOD-PONO-Net去雾与YOLOv8改进

本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!

专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html

雾霾环境下物体检测的优化方法:结合AOD-PONO-Net去雾与YOLOv8改进

1. 引言

图像去雾(Image Dehazing)是计算机视觉领域中的一个重要问题,尤其是在户外场景中,雾霾天气会严重影响图像质量,进而影响物体检测、分割等任务的精度。YOLOv8作为当前主流的物体检测算法之一,其性能在良好条件下表现出色,但在雾霾等低质量图像上往往存在较大误差。因此,如何将图像去雾技术与YOLOv8物体检测结合起来,成为了一个具有挑战性且极具应用潜力的方向。

本篇文章将深入探讨如何利用AOD-PONO-Net(AOD-Net的改进版)网络,结合YOLOv8改进图像物体检测的性能,特别是在去雾场景中的应用。AOD-PONO-Net通过对图像进

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员Gloria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值