人工智能-深度学习工具及实践

EduCoder平台:人工智能-深度学习工具及实践

第1关:TensorFlow简介

在这里插入图片描述

第2关:TensorFlow基本编程模型

编程要求:

根据提示,实现矩阵相乘方法。其中:

  • data:待喂入的数据
  • w:常量:tf.constant([[5.,3.],[4.,2. ]])

测试说明:

程序会调用你实现的方法对数据进行计算,如:

输入: [[1,1],[2,2]]

输出:[[ 9. 5.] [18. 10.]]

输入: [[1,1]]

输出: [[9. 5.]]

代码如下:

# -*- coding: utf-8 -*-
import tensorflow as tf
def calc_xw(data):
    '''
    data:待喂入的数据
    '''
    #*********Bengin*********#
    #创建占位符
    x = tf.placeholder(tf.float32,[None,2])
    #定义常量
    w = tf.constant([[5.,3.],[4.,2.]])
    #构造模型,其中xw为矩阵相乘
    y = tf.matmul(x,w)
    #平台显存优化代码
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    #创建会话
    sess = tf.Session(config=config)
    #运行sess进行计算
    result=sess.run(y,feed_dict={x:data})
    #关闭会话
    #sess.close()
    #*********End********#
    return result

第3关:Tensorflow机器学习编程框架

编程要求:

根据提示,在右侧编辑器补充代码,实现多次项回归,对多次项曲线进行拟合。
测试说明:

本次需要拟合曲线图像如下:

在这里插入图片描述
生成代码如下:

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1,1,100).reshape(-1,1)
y = 5*x**2+3*x+1
plt.plot(x,y,c='r')  
plt.show()  

其中:

x:特征(shape=[100,1]) y:标签(shape=[100,1])

我们会将x,y划分为训练集与测试集,并提供训练集特征与标签用来训练模型,再将测试集特征输入模型进行预测。若测试集上预测值与真实值的mse损失函数值低于阈值则视为通关。

多次项回归模型构建如下:

X = tf.placeholder(tf.float32,[None,1])
a = tf.Variable(tf.ones([1]), dtype=tf.float32) 
b = tf.Variable(tf.ones([1]), dtype=tf.float32)
c = tf.Variable(tf.ones([1]), dtype=tf.float32) 
predict=tf.add(tf.add(tf.multiply(a,tf.square(X)),tf.multiply(b,X)),c)

开始你的任务吧,祝你成功!

代码如下:

# -*- coding: utf-8 -*-
import tensorflow as tf

def tf_predict(train_data,train_label,test_data,lr,n_iters):
    '''
    train_data(ndarray):训练数据
    train_label(ndarray):训练标签
    test_data(ndarray):测试数据
    lr(float):学习率
    n_iters(int):训练轮数
    test_predict(ndarray):测试集预测标签
    '''
    #*********Bengin*********#
    #构造计算图
    #step1使用placeholder定义输入数据
    X = tf.placeholder(tf.float32,[None,1])
    Y = tf.placeholder(tf.float32,[None,1])
    #step2使用Variable定义模型参数
    a = tf.Variable(tf.ones([1]),dtype=tf.float32)
    b = tf.Variable(tf.ones([1]),dtype=tf.float32)
    c = tf.Variable(tf.ones([1]),dtype=tf.float32)
    #step3多次项回归模型与损失函数  
    predict = tf.add(tf.add(tf.multiply(a,tf.square(X)),tf.multiply(b,X)),c)
    loss = tf.reduce_mean(tf.square(Y-predict))
    #step4构造优化器
    train = tf.train.AdamOptimizer(lr).minimize(loss)
    #平台优化内存代码
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    #创建会话
    sess = tf.Session(config=config)
    #运行会话,对模型进行训练
    #step1执行参数初始化
    sess.run(tf.global_variables_initializer())
    #step2定义迭代脚本并执行
    for i in range(n_iters):
        sess.run(train,feed_dict={X:train_data,Y:train_label})
    #输入预测数据特征,得到预测标签
    test_predict = sess.run(predict,feed_dict={X:test_data})
    #关闭会话

    #*********End*********#
    return test_predict



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pretend ^^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值