平差之经验离散度测量

离散度测量说白了就是方差

理论的离散度测量:

随 机 误 差 = 观 测 值 − 期 望 值 随机误差 = 观测值- 期望值 =
ε j = l j ⏟ Actual  − μ l ⏟ Nominal  ⇒ ∀ j ⏟ for all  j \varepsilon_{j}=\underbrace{l_{j}}_{\text {Actual }}-\underbrace{\mu_{l}}_{\text {Nominal }} \Rightarrow \underbrace{\forall_{j}}_{\text {for all } j} εj=Actual  ljNominal  μlfor all j j
σ l 2 = E ( ε 2 ) = lim ⁡ n → ∞ { 1 n ∑ j = 1 n ε j 2 } = lim ⁡ n → ∞ { 1 n ε 1 , n T ⋅ ε n , 1 } \sigma_{l}^{2}=E\left(\varepsilon^{2}\right)=\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j}^{2}\right\}=\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \varepsilon_{1, n}^{T} \cdot \varepsilon_{n,1}\right\} σl2=E(ε2)=nlim{n1j=1nεj2}=nlim{n1ε1,nTεn,1}
σ x 2 = ∫ − ∞ ∞ ( x − μ x ) 2 f ( x ) d x \sigma_{x}^{2}=\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} f(x) \mathrm{d} x σx2=(xμx)2f(x)dx

经验的离散度度测量

已知期望值 μ l \mu_{l} μl

l 1 , n = [ l 1 l 2 ⋯ l n ] T  with  n ≪ ∞ l_{1, n}=\left[\begin{array}{llll} l_{1} & l_{2} & \cdots & l_{n} \end{array}\right]^{T} \text { with } n \ll \infty l1,n=[l1l2ln]T with n
ε n , 1 = l n , 1 − e n , 1 ⋅ μ l \varepsilon_{n, 1}=l_{n, 1}-e_{n, 1} \cdot \mu_{l} εn,1=ln,1en,1μl
s l 2 = ε 1 2 + ε 2 2 + ε 3 2 + ⋯ + ε n 2 = 1 n ⋅ ∑ j = 1 n ε j 2 = 1 n ⋅ ε 1 , n T ⋅ ε n , 1 \begin{array}{c} s_{l}^{2}=\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\varepsilon_{3}^{2}+\cdots+\varepsilon_{n}^{2}=\frac{1}{n} \cdot \sum_{j=1}^{n} \varepsilon_{j}^{2} \\ =\frac{1}{n} \cdot \varepsilon_{1, n}^{T} \cdot \varepsilon_{n, 1} \end{array} sl2=ε12+ε22+ε32++εn2=n1j=1nεj2=n1ε1,nTεn,1
单独观测的经验方差:
s l = s l 2 s_{l}=\sqrt{s_{l}^{2}} sl=sl2
E ( s l 2 ) = σ l 2 E\left(s_{l}^{2}\right)=\sigma_{l}^{2} E(sl2)=σl2
但是
E ( s l ) ≠ σ l E\left(s_{l}\right) \neq \sigma_{l} E(sl)=σl
通常
E ( s l ) < σ l E\left(s_{l}\right)<\sigma_{l} E(sl)<σl

未知期望值 μ l \mu_{l} μl

L 1 , n = [ l 1 l 2 ⋯ l n ] T  with  n ≪ ∞ L_{1, n}=\left[\begin{array}{llll} l_{1} & l_{2} & \cdots & l_{n} \end{array}\right]^{T} \text { with } n \ll \infty L1,n=[l1l2ln]T with n
期望值是不知道的:
只能用样本均值替代总体期望值:
l ˉ = 1 n ⋅ ∑ j = 1 n l j = 1 n ⋅ e 1 , n T ⋅ L n , 1 \bar{l}=\frac{1}{n} \cdot \sum_{j=1}^{n} l_{j}=\frac{1}{n} \cdot e_{1, n}^{T} \cdot L_{n, 1} lˉ=n1j=1nlj=n1e1,nTLn,1
这里引入新的变量 v j v_j vj,表示改正数:
改 正 数 = 均 值 − 观 测 值 改正数=均值-观测值 =
v j = l ˉ − l j … ∀ j …  for all  j v_{j}=\bar{l}-l_{j} \ldots \forall_{j} \ldots \text { for all } j vj=lˉljj for all j
需满足,因为随机误差的和等于0,这里改正数其实也相当于随机误差了:
∑ j = 1 n v j = 0 \sum_{j=1}^{n} v_{j}=0 j=1nvj=0
改正数的向量表达:
v n , 1 = [ v 1 v 2 v 3 ⋮ v n ] = [ l ˉ − l 1 l ˉ − l 2 l ˉ − l 3 ⋮ l ˉ − l n ] = e n , 1 ⋅ l ˉ − L n , 1 v_{n, 1}=\left[\begin{array}{c} v_{1} \\ v_{2} \\ v_{3} \\ \vdots \\ v_{n} \end{array}\right]=\left[\begin{array}{c} \bar{l}-l_{1} \\ \bar{l}-l_{2} \\ \bar{l}-l_{3} \\ \vdots \\ \bar{l}-l_{n} \end{array}\right]=e_{n, 1} \cdot \bar{l}-L_{n, 1} vn,1=v1v2v3vn=lˉl1lˉl2lˉl3lˉln=en,1lˉLn,1
方差(注意是n-1,少一个自由度,因为这里的v是用 l ˉ \bar{l} lˉ和L算出来的,而 l ˉ \bar{l} lˉ又是用L算出来的):
s l 2 = ( v 1 2 + v 2 2 + v 3 2 + ⋯ + v n 2 ) = 1 n − 1 ⋅ ∑ j = 1 n v i 2 = 1 n − 1 ⋅ v 1 , n T ⋅ v 1 , n \begin{aligned} s_{l}^{2} &=\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+\cdots+v_{n}^{2}\right) \\ &=\frac{1}{n-1} \cdot \sum_{j=1}^{n} v_{i}^{2} \\ &=\frac{1}{n-1} \cdot v_{1, n}^{T} \cdot v_{1, n} \end{aligned} sl2=(v12+v22+v32++vn2)=n11j=1nvi2=n11v1,nTv1,n
ε ( s l 2 ) = σ l 2 \varepsilon\left(s_{l}^{2}\right)=\sigma_{l}^{2} ε(sl2)=σl2
E ( s i ) ≠ σ l E\left(s_{i}\right) \neq \sigma_{l} E(si)=σl
E ( s i ) < σ l E\left(s_{i}\right) < \sigma_{l} E(si)<σl

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值