1、马尔可夫性质(Markov Property):当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态,那么此随机过程即具有马尔可夫性质。具有马尔可夫性质的过程通常称之为马尔可夫过程(Markov process)。记录下所有时刻参数的变化, 就构成了马尔科夫链(Markov Chain,MC)。现代统计学中,在求复杂贝叶斯积分时, 用到马尔科夫链以及一些随机抽样的方法, 获得参数的近似分布。马尔可夫链可被应用于蒙特卡罗方法中,形成马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)。
2、贝叶斯公式:表示参数集theta以及数据y关系的概率公式
p(theta|y) = {p(y|theta)*p(theta)}/p(y)
其中theta为参数集, y为数据:
p(y|theta) 为给定参数下, 数据y出现的概率, 也就是观测样本分布,即Likelihood,似然函数
p(theta) 为参数集theta的先验分布(先验概率),可假设为任何概率密度分布。
p(theta|y)为后验概率
p(y)则称为normalizing constant, 一般并不关心其取值。
但是, 要获得给定数据下的参数的分布却并不容易,p(y)是极难获取的值。 幸运的是, 在统计学家发明了一种基于随机抽样的方法, 可以获得参数的近似分布, 而不必考虑p(y)。 这几种有两种最常用技术(Gibbs Sampling和Metrapolis Sampling),都是基于蒙特卡罗马尔科夫链。
参考:http://blog.sciencenet.cn/blog-255662-843026.html
或者贝叶斯公式写为:
参数θ连续分布
3、蒙特卡罗方法(Monte Carlo Simulation)
随机模拟 (或者统计模拟,或者随机算法) 方法有一个很酷的别名是蒙特卡罗方法。统计模拟中有一个重要的问题就是给定一个概率分布p(x),我们如何在计算机中生成它的样本。一般而言均匀分布uniform(0,1)的样本是相对容易生成的,而我们常见的概率分布,无论是连续的还是离散的分布,都可以基于uniform(0,1)的样本生成,但是当概率分布p(x)的形式很复杂,或者 p(x)是个高维的分布的时候,样本的生成就可能很困难了。
在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作:
①用蒙特卡罗方法模拟某一过程时,需要产生某一概率分布的随机变量(样本)。
②用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。
4、马尔可夫链及其平稳分布
马氏链的数学定义很简单:
P为转移矩阵,也就是状态转移的概率只依赖于前一个状态。
马氏链定理:
马氏链的收敛行为和初始概率分布 π0无关,主要是由概率转移矩阵P决定的
Markov Chain Monte Carlo
参考:https://cosx.org/2013/01/lda-math-mcmc-and-gibbs-sampling