平稳过程的各态历经性

1.各态历经的定义

如果一个随机过程是平稳的,而且是均值相关函数都具有各态历经性,那么我们称这个平稳过程具有各态历经性。

  • 均值各态历经的定义
    < X t > = l . i . m T → ∞ 1 2 T ∫ − T T X t d t <X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}X_tdt <Xt>=l.i.mT2T1TTXtdt < X t > <X_t> <Xt>以概率1有 < X t > = m x ( t ) <X_t>=m_x(t) <Xt>=mx(t),则称之为均值具有各态历经性
  • 相关函数各态历经的定义
    < X t ‾ X t + τ > = l . i . m T → ∞ 1 2 T ∫ − T T X t ‾ X t + τ d t <\overline{X_t}X_{t+\tau}>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}\overline{X_t}X_{t+\tau}dt <XtXt+τ>=l.i.mT2T1TTXtXt+τdt
    < X t ‾ X t + τ > <\overline{X_t}X_{t+\tau}> <XtXt+τ>以概率1有 < X t ‾ X t + τ > = R x ( τ ) <\overline{X_t}X_{t+\tau}>=R_x(\tau) <XtXt+τ>=Rx(τ)[因为是平稳过程]

2.例题

2.1 例1

X t = a c o s ( w t + θ ) X_t=acos(wt+\theta) Xt=acos(wt+θ),其中 a , w a,w a,w均为常数, θ \theta θ服从 [ 0 , 2 π ] [0,2\pi] [0,2π]上的均匀分布,讨论 X t X_t Xt的各态历经性

  • 解:
    m x ( t ) = ∫ 0 2 π 1 2 π a c o s ( w t + θ ) d t = ∫ 0 2 π 1 2 π [ a c o s w t c o s θ − a s i n w t s i n θ d t = 0 m_x(t)=\int_{0}^{2\pi}\frac{1}{2\pi}acos(wt+\theta)dt=\int_{0}^{2\pi}\frac{1}{2\pi}[acoswtcos\theta -asinwtsin\theta dt=0 mx(t)=02π2π1acos(wt+θ)dt=02π2π1[acoswtcosθasinwtsinθdt=0 R X ( t , t + τ ) = ∫ 0 2 π 1 2 π a c o s ( w t + θ ) a c o s ( w t + w τ + θ ) d t = a 2 2 c o s w t R_X(t,t+\tau)=\int_{0}^{2\pi}\frac{1}{2\pi}acos(wt+\theta)acos(wt+w\tau+\theta)dt=\frac{a^2}{2}coswt RX(t,t+τ)=02π2π1acos(wt+θ)acos(wt+wτ+θ)dt=2a2coswt所以该过程为平稳过程。 < X t > = l . i . m T → ∞ 1 2 T ∫ − T T a c o s ( w t + θ ) d t = l . i . m T → ∞ 1 2 T ∫ − T T a [ c o s w t c o s θ − s i n w t s i n θ d t <X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}acos(wt+\theta)dt=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}a[coswtcos\theta -sinwtsin\theta dt <Xt>=l.i.mT2T1TTacos(wt+θ)dt=l.i.mT2T1TTa[coswtcosθsinwtsinθdt因为 s i n w t sinwt sinwt是奇函数,所以在对称区间上积分为零,故上式可以写为 < X t > = l . i . m T → ∞ a c o s θ 2 T ∫ − T T a c o s w t d t = l . i . m T → ∞ a c o s θ 2 T 2 a w s i n w T = 0 <X_t>=l.i.m_{T\rightarrow \infty}\frac{acos\theta}{2T}\int_{-T}^{T}acoswtdt=l.i.m_{T\rightarrow \infty}\frac{acos\theta}{2T}\frac{2a}{w}sinwT=0 <Xt>=l.i.mT2TacosθTTacoswtdt=l.i.mT2Tacosθw2asinwT=0接下来求一求互相关函数 < X t ‾ X t + τ > = l . i . m T → ∞ 1 2 T ∫ − T T a c o s ( w t + θ ) a c o s ( w t + w τ + θ ) d t = l . i . m T → ∞ a 2 4 T ∫ − T T c o s ( 2 w t + w τ + 2 θ ) + c o s w τ d t <\overline{X_t}X_{t+\tau}>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}acos(wt+\theta)acos(wt+w\tau+\theta)dt=l.i.m_{T\rightarrow \infty}\frac{a^2}{4T}\int_{-T}^{T}cos(2wt+w\tau+2\theta)+cosw\tau dt <XtXt+τ>=l.i.mT2T1TTacos(wt+θ)acos(wt+wτ+θ)dt=l.i.mT4Ta2TTcos(2wt+wτ+2θ)+coswτdt = l . i . m T → ∞ a 2 4 w T s i n ( 2 w T + w τ + 2 θ ) + a 2 2 c o s w T = a 2 2 c o s w T = R X ( t , t + τ ) =l.i.m_{T\rightarrow \infty}\frac{a^2}{4wT}sin(2wT+w\tau+2\theta)+\frac{a^2}{2}coswT=\frac{a^2}{2}coswT=R_X(t,t+\tau) =l.i.mT4wTa2sin(2wT+wτ+2θ)+2a2coswT=2a2coswT=RX(t,t+τ)由此可得,该过程是各态历经的过程

2.2例2

随机过程 X t X_t Xt具有概率分布 P ( x = i ) = 1 3 , i = 1 , 2 , 3 P(x=i)=\frac{1}{3},i=1,2,3 P(x=i)=31,i=1,2,3试讨论 X t X_t Xt的各态历经性。

  • 解:
    m x ( t ) = 1 × 1 3 + 2 × 1 3 + 3 × 1 3 = 2 , R x ( t , t + τ ) = E [ X 2 ] = 14 3 m_x(t)=1\times \frac{1}{3}+2\times \frac{1}{3}+3 \times \frac{1}{3}=2,Rx(t,t+\tau)=E[X^2]=\frac{14}{3} mx(t)=1×31+2×31+3×31=2,Rx(t,t+τ)=E[X2]=314显然,该过程是平稳的

< X t > = l . i . m T → ∞ 1 2 T ∫ − T T X t d t = X t ≠ m x ( t ) <X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}X_tdt=X_t\neq m_x(t) <Xt>=l.i.mT2T1TTXtdt=Xt=mx(t)所以可以得到,该过程不具有各态历经性

3.各态历经性的判定

X = { X t , − ∞ < t < + ∞ } X=\{X_t,-\infty<t<+\infty\} X={Xt,<t<+}是平稳过程,则 X X X的均值函数具有各态历经性的充要条件是 l i m T − > + ∞ 1 2 T ∫ − 2 T 2 T ( 1 − ∣ τ ∣ 2 T ) C x ( τ ) d τ = 0 lim_{T->+\infty}\frac{1}{2T}\int_{-2T}^{2T}(1-\frac{|\tau|}{2T})C_x(\tau)d\tau=0 limT>+2T12T2T(12Tτ)Cx(τ)dτ=0
在这里插入图片描述
在这里插入图片描述
积分积分不会求😅😅😅😅😅😅😅
在这里插入图片描述
未完待续

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值