平稳过程的各态历经性
1.各态历经的定义
如果一个随机过程是平稳的,而且是均值和相关函数都具有各态历经性,那么我们称这个平稳过程具有各态历经性。
- 均值各态历经的定义
< X t > = l . i . m T → ∞ 1 2 T ∫ − T T X t d t <X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}X_tdt <Xt>=l.i.mT→∞2T1∫−TTXtdt若 < X t > <X_t> <Xt>以概率1有 < X t > = m x ( t ) <X_t>=m_x(t) <Xt>=mx(t),则称之为均值具有各态历经性 - 相关函数各态历经的定义
< X t ‾ X t + τ > = l . i . m T → ∞ 1 2 T ∫ − T T X t ‾ X t + τ d t <\overline{X_t}X_{t+\tau}>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}\overline{X_t}X_{t+\tau}dt <XtXt+τ>=l.i.mT→∞2T1∫−TTXtXt+τdt
若 < X t ‾ X t + τ > <\overline{X_t}X_{t+\tau}> <XtXt+τ>以概率1有 < X t ‾ X t + τ > = R x ( τ ) <\overline{X_t}X_{t+\tau}>=R_x(\tau) <XtXt+τ>=Rx(τ)[因为是平稳过程]
2.例题
2.1 例1
设 X t = a c o s ( w t + θ ) X_t=acos(wt+\theta) Xt=acos(wt+θ),其中 a , w a,w a,w均为常数, θ \theta θ服从 [ 0 , 2 π ] [0,2\pi] [0,2π]上的均匀分布,讨论 X t X_t Xt的各态历经性
- 解:
m x ( t ) = ∫ 0 2 π 1 2 π a c o s ( w t + θ ) d t = ∫ 0 2 π 1 2 π [ a c o s w t c o s θ − a s i n w t s i n θ d t = 0 m_x(t)=\int_{0}^{2\pi}\frac{1}{2\pi}acos(wt+\theta)dt=\int_{0}^{2\pi}\frac{1}{2\pi}[acoswtcos\theta -asinwtsin\theta dt=0 mx(t)=∫02π2π1acos(wt+θ)dt=∫02π2π1[acoswtcosθ−asinwtsinθdt=0 R X ( t , t + τ ) = ∫ 0 2 π 1 2 π a c o s ( w t + θ ) a c o s ( w t + w τ + θ ) d t = a 2 2 c o s w t R_X(t,t+\tau)=\int_{0}^{2\pi}\frac{1}{2\pi}acos(wt+\theta)acos(wt+w\tau+\theta)dt=\frac{a^2}{2}coswt RX(t,t+τ)=∫02π2π1acos(wt+θ)acos(wt+wτ+θ)dt=2a2coswt所以该过程为平稳过程。 < X t > = l . i . m T → ∞ 1 2 T ∫ − T T a c o s ( w t + θ ) d t = l . i . m T → ∞ 1 2 T ∫ − T T a [ c o s w t c o s θ − s i n w t s i n θ d t <X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}acos(wt+\theta)dt=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}a[coswtcos\theta -sinwtsin\theta dt <Xt>=l.i.mT→∞2T1∫−TTacos(wt+θ)dt=l.i.mT→∞2T1∫−TTa[coswtcosθ−sinwtsinθdt因为 s i n w t sinwt sinwt是奇函数,所以在对称区间上积分为零,故上式可以写为 < X t > = l . i . m T → ∞ a c o s θ 2 T ∫ − T T a c o s w t d t = l . i . m T → ∞ a c o s θ 2 T 2 a w s i n w T = 0 <X_t>=l.i.m_{T\rightarrow \infty}\frac{acos\theta}{2T}\int_{-T}^{T}acoswtdt=l.i.m_{T\rightarrow \infty}\frac{acos\theta}{2T}\frac{2a}{w}sinwT=0 <Xt>=l.i.mT→∞2Tacosθ∫−TTacoswtdt=l.i.mT→∞2Tacosθw2asinwT=0接下来求一求互相关函数 < X t ‾ X t + τ > = l . i . m T → ∞ 1 2 T ∫ − T T a c o s ( w t + θ ) a c o s ( w t + w τ + θ ) d t = l . i . m T → ∞ a 2 4 T ∫ − T T c o s ( 2 w t + w τ + 2 θ ) + c o s w τ d t <\overline{X_t}X_{t+\tau}>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}acos(wt+\theta)acos(wt+w\tau+\theta)dt=l.i.m_{T\rightarrow \infty}\frac{a^2}{4T}\int_{-T}^{T}cos(2wt+w\tau+2\theta)+cosw\tau dt <XtXt+τ>=l.i.mT→∞2T1∫−TTacos(wt+θ)acos(wt+wτ+θ)dt=l.i.mT→∞4Ta2∫−TTcos(2wt+wτ+2θ)+coswτdt = l . i . m T → ∞ a 2 4 w T s i n ( 2 w T + w τ + 2 θ ) + a 2 2 c o s w T = a 2 2 c o s w T = R X ( t , t + τ ) =l.i.m_{T\rightarrow \infty}\frac{a^2}{4wT}sin(2wT+w\tau+2\theta)+\frac{a^2}{2}coswT=\frac{a^2}{2}coswT=R_X(t,t+\tau) =l.i.mT→∞4wTa2sin(2wT+wτ+2θ)+2a2coswT=2a2coswT=RX(t,t+τ)由此可得,该过程是各态历经的过程
2.2例2
随机过程 X t X_t Xt具有概率分布 P ( x = i ) = 1 3 , i = 1 , 2 , 3 P(x=i)=\frac{1}{3},i=1,2,3 P(x=i)=31,i=1,2,3试讨论 X t X_t Xt的各态历经性。
- 解:
m x ( t ) = 1 × 1 3 + 2 × 1 3 + 3 × 1 3 = 2 , R x ( t , t + τ ) = E [ X 2 ] = 14 3 m_x(t)=1\times \frac{1}{3}+2\times \frac{1}{3}+3 \times \frac{1}{3}=2,Rx(t,t+\tau)=E[X^2]=\frac{14}{3} mx(t)=1×31+2×31+3×31=2,Rx(t,t+τ)=E[X2]=314显然,该过程是平稳的
< X t > = l . i . m T → ∞ 1 2 T ∫ − T T X t d t = X t ≠ m x ( t ) <X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}X_tdt=X_t\neq m_x(t) <Xt>=l.i.mT→∞2T1∫−TTXtdt=Xt=mx(t)所以可以得到,该过程不具有各态历经性
3.各态历经性的判定
设
X
=
{
X
t
,
−
∞
<
t
<
+
∞
}
X=\{X_t,-\infty<t<+\infty\}
X={Xt,−∞<t<+∞}是平稳过程,则
X
X
X的均值函数具有各态历经性的充要条件是
l
i
m
T
−
>
+
∞
1
2
T
∫
−
2
T
2
T
(
1
−
∣
τ
∣
2
T
)
C
x
(
τ
)
d
τ
=
0
lim_{T->+\infty}\frac{1}{2T}\int_{-2T}^{2T}(1-\frac{|\tau|}{2T})C_x(\tau)d\tau=0
limT−>+∞2T1∫−2T2T(1−2T∣τ∣)Cx(τ)dτ=0
积分积分不会求😅😅😅😅😅😅😅
未完待续