1.从本地文件系统中导入数据到hive表
(1)数据准备(/home/sopdm/test.dat):
1,wyp,25,13188888888
2,test,30,13899999999
3,zs,34,89931412
(2)首先创建表
use sopdm;
drop table if exists sopdm.wyp;
create table if not exists sopdm.wyp(id int,name string,age int,tel string)
row format delimited
fields terminated by ','
stored as textfile;
(3)从本地文件系统中导入数据到Hive表
load data local inpath ‘/home/sopdm/test.dat’ into table sopdm.wyp;
(4)可以到wyp表的数据目录下查看,如下命令
dfs -ls /user/sopdm/hive/warehouse/sopdm.db/wyp;
2.从HDFS上导入数据到Hive表
(1)现在hdfs中创建一个input目录存放HDFS文件
hadoop fs -mkdir input; 或 hadoop fs -mkdir /user/sopdm/input;
(2)把本地文件上传到HDFS中,并重命名为test_hdfs.dat
hadoop fs -put /home/sopdm/test.dat /user/sopdm/input/test_hdfs.dat;
(3)查看文件
dfs -cat /user/sopdm/input/test_hdfs.dat;
(4)将内容导入hive表中
--拷贝“本地数据”到“hive”使用:load data local…
--转移“HDFS”到“hive”(必须同一个集群)使用:load data…
load data inpath ‘/user/sopdm/input/test_hdfs.dat’ into table sopdm.wyp;
3.从别的Hive表中导入数据到Hive表中
create table if not exists sopdm.wyp2(id int,name string,tel string)
row format delimited
fields terminated by ','
stored as textfile;
--overwrite是覆盖,into是追加
insert into table sopdm.wyp2
select id,name,tel from sopdm.wyp;
--多表插入
--高效方式-查询语句插入多个分区
from sopdm.wyp w
insert overwrite table sopdm.wyp2
select w.id,w.name,w.tel where w.age=25
insert overwrite table sopdm.wyp2
select w.id,w.name,w.tel where w.age=27;
4.创建Hive表的同时导入查询数据
create table sopdm.wyp3
as select id,name,tel,age from sopdm.wyp where age=25;
5.使用sqoop从关系数据库导入数据到Hive表
1)
sqoop import --connect jdbc:mysql://10.10.166.10:3306/database_name --username XXXX--password XXXX --table source_table_name --fields-terminated-by '\t' -m 1 --hive-database obd_minix --hive-table to_table_name --where "id in('P008000400000981','P008000400000982','P008000400000983' ) and unix_timestamp(client_time) > 1470240000 - 86400*14" --hive-import --hive-overwrite
--table 不能与 --query 一起使用
--where 限制导入的条件
2)
sqoop import --connect jdbc:mysql://10.95.3.49:3306/workflow --username shirdrn -P
--query 'SELECT users.*, tags.tag FROM users JOIN tags ON (users.id = tags.user_id) WHERE $CONDITIONS'
--split-byusers.id --target-dir /hive/tag_db/user_tags -- --default-character-set=utf-8