pandas.concat注意事项

df =pandas.concat([df1,df2])

由于df1和df2有各自的索引,假设都是从0~N

此时df的索引就会有重复,如果不使用索引还好。

如果在后面不小心使用索引,此时需要重置索引。

否则可能报错,只是说数据大小超出内存限制,但是shape没问题,数据记录数多了很多。

1、可以考虑df.reset_index(drop=True,inplace=True)

2、pandas.concat([df1,df2], ignore_index=True)

ignore_index:
 If True, do not use the index values along the concatenation axis. The
        resulting axis will be labeled 0, ..., n - 1. This is useful if you are
        concatenating objects where the concatenation axis does not have
        meaningful indexing information. Note the index values on the other
        axes are still respected in the join.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mtj66

看心情

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值