poj 2442

1 篇文章 0 订阅
0 篇文章 0 订阅

Sequence
Time Limit: 6000MS
Memory Limit: 65536K
Total Submissions: 8625
Accepted: 2846

Description

Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It's clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?

Input

The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.

Output

For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.

Sample Input

1
2 3
1 2 3
2 2 3

Sample Output

3 3 4

大致题意:题目输入的第一行T指的是共几个例子,下面每个例子第一行给出两个数据:m,n。接下来输入m行n列,要求求出从每行取出一个数(共m个数)之和的前n个最小和。


思路:这里就不记录原来错误的思路了==写了一大堆还WA了。。。。总之是后来搜了下别人的思路(网址:http://blog.csdn.net/mmc2015/article/details/50490027)用的优先队列,贪心的算法(每次都选择小的)。

具体实现是这样的:建立一个优先队列pq(最大的数优先)。首先输入数据,每行从小到大排列,第一行排序后存在一个临时数组tmp里面,接着开始循环,好多个循环==最外层:从第二行开始循环,行数逐渐增加,每到一个新的行,先将这行的第一个数和tmp里的每一个数加起来,放到优先队列里面。接着开始从这一行的第二个数开始遍历,每到一个新的数,就将这个数和tmp里的每一个数都加起来,然后和优先队列里的top比较,如果小于top,说明这个数更优,就将优先队列的top去掉,把这个数放进去,如果大于top就直接break掉,因为tmp已经是递增的了,后面的必然是大于top的。该行结束以后,将优先队列里的数保存到tmp里面,接着进行下一行。。。以此类推


思路有了这个代码不难写,就是多了几个循环。。写的时候一直担心超时,最后竟一遍就过了==

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;

int a[101][2001],tmp[2001];
priority_queue<int,vector<int>,less<int> > pq;

int main()
{
    int T,m,n,i,j,k,t,l;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&m,&n);
        for(i=0;i<m;i++)
        {
            for(j=0;j<n;j++)
            {
                scanf("%d",&a[i][j]);
                if(i==0)tmp[j]=a[i][j];
            }
            sort(a[i],a[i]+n);
        }
        sort(tmp,tmp+n);
        for(i=1;i<m;i++)
        {
            for(k=0;k<n;k++)
            {
                pq.push(a[i][0]+tmp[k]);
            }
            for(j=1;j<n;j++)
            {
                for(k=0;k<n;k++)
                {
                    t=pq.top();
                    if(a[i][j]+tmp[k]<=t)
                    {
                        pq.pop();
                        pq.push(a[i][j]+tmp[k]);
                    }
                    else break;
                }
            }
            l=0;
            while(!pq.empty())
            {
                tmp[l++]=pq.top();
                pq.pop();
            }
            sort(tmp,tmp+n);
        }
        printf("%d",tmp[0]);
        for(i=1;i<n;i++)
            printf(" %d",tmp[i]);
        printf("\n");
    }
    return 0;
}

这题应该还有其他方法,以后会更新改进



























评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值