经典神经网络实验整理
lenet5模型实现手写体数字识别
本次实验通过lenet5模型和MNIST数据集实现手写体数字识别训练。
MNIST数据集是一个手写数字的数据库,对于卷积神经网络是一个最为简单的图片数据集。
MNIST的下载地址为 http://yann.lecun.com/exdb/mnist/
该数据集包含四个文件,分别为测试图像,测试标签,训练图像和训练标签。
MNIST数据集图片的像素皆为28*28,单通道。标签为1-10,对应的是0-9十个数字。
对于MNIST数据集,TensorFlow中有已经封装好的函数来读取该数据集。
from tensorflow.examples.tutorials.mnist import input_data
mnist_data_set = input_data.read_data_sets('MNIST_data', one_hot=True)
对lenet5模型进行处理,整个网络模型分为2个卷积模块,2个池化模块、2个全连接模块,最后再连接一个softmax模块,输出层为10个节点,分别代表1到9共10个数字。
先定义占位符如下:
x = tf.placeholder('float32', [None, 784])
y = tf.placeholder('float32', [None, 10])
再将输入向量变为28*28的矩阵形式:
# 把数据转换为矩阵形式
x_image = tf.reshape(x, [-1, 28, 28, 1])
初始化卷积核和偏置量:
# 初始化卷积核
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 初始化偏置量
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
抽象化卷积函数和池化函数:
# 抽象化卷积函数
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 抽象化池化函数
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
第一层卷积核大小为5×5×6,卷积完之后应用relu激活函数,最后进行maxpooling
# 第一层卷积
W_conv1 = weight_variable([5, 5, 1, 6])
b_conv1 = bias_variable([6])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
第二层通道数变为16个:
W_conv2 = weight_variable([5, 5, 6, 16])
b_conv2 = bias_variable([16])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
此时图像大小为7*7*16,把图像展开为向量并进行全连接:
#展开为向量
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*16])
# 第一层全连接
W_fc1 = weight_variable([7*7*16, 120])
b_fc1 = bias_variable([120])
h_fc1 = tf.nn.relu(tf.add(tf.matmul(h_pool2_flat, W_fc1), b_fc1))
# 第二层全连接
W_fc2 = weight_variable([120, 10])
b_fc2 = bias_variable([10])
h_fc2 = tf.nn.softmax(tf.add(tf.matmul(h_fc1, W_fc2), b_fc2))
采用交叉熵作为损失函数,使用Adam优化算法调整参数,定义正确率以便观察。
# 代价函数
cross_ntropy = -tf.reduce_sum(y*tf.log(h_fc2))
# 使用Adam优化算法调整参数
train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(cross_ntropy)
# 正确率
correct_prediction = tf.equal(tf.arg_max(h_fc2, 1), tf.arg_max(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
初始化变量:
sess.run(tf.initialize_all_variables())
进行训练:
# 训练
for i in range(1000):
# 获取训练数据
batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch_xs, y: batch_ys})
c.append(train_accuracy)
print("step %d, train accuracy %g" % (i, train_accuracy))
# 训练数据
train_step.run(feed_dict={
x: batch_xs, y: batch_ys})
sess.close()
plt.plot(c)
plt.tight_layout()
plt.savefig('cnn-tf-mnist.png', dpi=200)
训练结果:
使用mnist提供的测试数据集进行模型测试:
#测试该网路
import time
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
###加载mnist_inference.py和mnist_train.py中定义的常量和前向传播的函数########
import mnist_inference
import mnist_train
#每10秒加载一次最新的模型,并在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10
def evaluate( mnist ):
with tf.Graph().as_default() as g: #将默认图设为g
#定义输入输出的格式
x = tf.placeholder(tf.float32, [mnist.validation.images.shape[0],
mnist_inference.IMAGE_SIZE,
mnist_inference.IMAGE_SIZE,
mnist_inference.NUM_CHANNELS], name='x-input1')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
xs = mnist.validation.images
# 类似地将输入的测试数据格式调整为一个四维矩阵
reshaped_xs = np.reshape(xs, (mnist.validation.images.shape[0],
mnist_inference.IMAGE_SIZE,
mnis