ODE 求解方法

这篇博客探讨了常微分方程(ODE)的数值求解方法,主要聚焦于Euler方法和Runge-Kutta方法。Euler方法包括前向Euler法,是一种显式方法,而向后Euler法则是一种隐式方法,可能需要更多计算时间但对刚性方程更稳定。Runge-Kutta方法涵盖二阶和四阶方法,常用于提高精度。
摘要由CSDN通过智能技术生成

本篇博客将对ODE求解方法的一些基本概念,方法做一个学习,总结

we want to solve the differential equations 

                                                               M(t)y'=f(t,y),y(t_0) =y_0

Numerical methods for solving first-order IVPs often fall into one of two large categories: linear multistep methods, or Runge-Kutta methods. A further division can be realized by dividing methods into those that are explicit and those that are implicit. 

将上式进行泰勒展开,

                             

只保留其中一次项,是下面各种积分方法的基础,省去的高次项是积分误差的来源。

 

基础知识比较好的参考书为:《数值分析》 Timothy Sauer (作者) 吴兆金 , 王国英 , 范红军 (译者)

序号 方法 简介
1

Runge-Kutta

methods

(Euler method

梯形法,

三阶,4阶方法)

推导方法:(对泰勒展开进行逐项匹配,计算参数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值