ML算法基础——分类算法(k近邻算法)

1.k近邻算法(KNN)概述

定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

如何计算距离?
两个样本的距离可以通过如下公式计算,又叫欧式距离

比如说,a(a1,a2,a3),b(b1,b2,b3)
image
两个样本的特征数据之间差异比较大,会对结果产生较大影响,因此采用KNN需要做标准化处理

2.sklearn k-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

  • n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数

  • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

3.实例流程

(1)数据集的处理

(2)分割数据集

(3)对数据集进行标准化

(4)estimator流程进行分类预测

3.1 鸢尾花分类

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
def knn_iris():
    """
    K-近邻预测用户签到位置
    :return:None
    """
    li = load_iris()

    x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.3)
    # 特征工程(标准化)
    std = StandardScaler()
    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)
    #进行算法流程 # 超参数
    knn = KNeighborsClassifier()
    # fit, predict,score
    knn.fit(x_train, y_train)
    # 得出预测结果
    y_predict = knn.predict(x_test)
    print("预测的目标签到位置为:", y_predict)
    # 得出准确率
    print("预测的准确率:", knn.score(x_test, y_test))

knn_iris()

>>>
预测的目标签到位置为: [0 0 1 0 1 2 2 1 1 0 1 2 2 2 0 2 1 2 1 2 0 1 2 0 2 1 0 2 2 0 1 1 1 1 2 0 0
 2 1 2 2 2 1 0 2]
预测的准确率: 0.9777777777777777

这里不进行标准化效果会更好

3.2 Facebook V: Predicting Check Ins | Kaggle

k近邻算法实例-预测入住位置
image

流程
(1)数据集的处理

1、缩小数据集范围
DataFrame.query()

2、处理日期数据
pd.to_datetime
pd.DatetimeIndex

3、增加分割的日期数据

4、删除没用的日期数据
pd.drop

5、将签到位置少于n个用户的删除

  • place_count=data.groupby('place_id').aggregate(np.count_nonzero)
  • tf = place_count[place_count.row_id > 3].reset_index()
  • data = data[data['place_id'].isin(tf.place_id)]

(2)分割数据集

(3)对数据集进行标准化

(4)estimator流程进行分类预测

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import pandas as pd
def knncls():
    #KNN预测用户签到位置
    #(1)读取
    data=pd.read_csv("train.csv")
    #print(data.head(10))
    #(2)处理
    #1.缩小数据,查询数据,筛选
    data= data.query("x>1.0 & x<1.25 & y>2.5 & x<2.75 ")
    #2.处理时间数据
    time_value=pd.to_datetime(data['time'],unit='s')
    #print(time_value)
    #3.把日期格式转换成字典格式
    time_value=pd.DatetimeIndex(time_value)
    #5.构造一些特征,
    data.loc[:,'day']=time_value.day
    data.loc[:,'hour'] = time_value.hour
    data.loc[:,'weekday'] = time_value.weekday

    #6.把时间戳特征删除
    data=data.drop(['time'],axis=1)
    print(data)
    #7.把签到数量小于n个的删除
    place_count= data.groupby('place_id').count()
    tf=place_count[place_count.row_id>5].reset_index()
    data=data[data['place_id'].isin(tf.place_id)]

    #8.取出数据中特征值和目标值
    y=data['place_id']

    x=data.drop(['place_id','row_id'],axis=1)

    #9.数据分割,分割成训练集和测试集
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    #(3)特征工程
    std=StandardScaler()

    #对测试集和训练集的特征值进行标准化处理
    x_train=std.fit_transform(x_train)

    x_test=std.transform(x_test)

    #(4)进行算法流程
    knn=KNeighborsClassifier(n_neighbors=10)
    #1.fit,predict,score
    knn.fit(x_train,y_train)
    #2.得出预测结果
    y_predict=knn.predict(x_test)
    print("预测的目标签到位置:",y_predict)
    #3.得出准确率
    print("预测的准确率:",knn.score(x_test,y_test))


    return None

knncls()

结果:

预测的目标签到位置: [8574168891 4932578245 3333445626 ... 7991720417 1381672707 9878507653]
预测的准确率: 0.14613403150204807

没有进行标准化的时候准确率是0.02这样

4.k-近邻算法优缺点

  • 优点:
    简单,易于理解,易于实现,无需估计参数,无需训练
  • 缺点:
    懒惰算法,对测试样本分类时的计算量大,内存开销大
    必须指定K值,K值选择不当则分类精度不能保证
  • 使用场景:小数据场景,几千~几万样本,具体场景具体业务
    去测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值