十二种主流ML算法

本文介绍了十二种主流的机器学习算法,包括线性回归、逻辑回归、线性判别分析、决策树、朴素贝叶斯、K邻近、学习向量量化、支持向量机、随机森林、AdaBoost、限制玻尔兹曼机和K-means聚类。这些算法涵盖了监督学习和非监督学习中的分类、回归和聚类任务。
摘要由CSDN通过智能技术生成

1. 线性回归(Linear Regression)

  • 监督学习中的回归问题方法

2. 逻辑回归(Logistic Regression)

  • 监督学习中的分类方法

  • 二分类问题的首选方法,逻辑函数看起来像一个大S,将任何值转换到0到1的范围

3. 线性判别分析(Linear Discriminant Analysis)LDA

  • 有两类以上的分类问题的首选线性分类技术

4. 决策树(Decision Tree)

  • 监督学习中的分类方法
  • 最简单的ML算法,一颗二叉树或多叉树

5. 朴素贝叶斯(Naive Bayes Classifier)NBC

-监督学习中的分类方法

  • 朴素在于假设的每个输入变量是独立的

6. K邻近(K-Nearest Neighbors)KNN

-分类+回归

  • KNN模型表示的是整个训练数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值