KMP算法 字符串匹配

其他字符串匹配算法介绍,详见:字符串匹配算法

KMP算法沿用了字符串匹配算法常见的命名模式:KMP分别对应三位计算机科学家的姓氏首字母:D. E. Knuth, J.H. Morris 、V. R. Pratt

术语介绍:最长前缀+后缀匹配子串
在这里插入图片描述
KMP算法的整体思路:在已匹配的前缀当中寻找到最长可匹配后缀子串和最长可匹配前缀子串,在下一轮直接把两者对齐,从而实现模式串的快速移动。

每次找“最长可匹配前/后缀子串”无需每轮重新遍历,直接利用next[]数组进行存储即可。next[i]=j,i表示“已匹配前缀的下一个位置”,j代表“最长可匹配前缀子串的下一个位置”。

以上图的主串和模式串比较的情况为例,模式串的next数组的值如下图所示:
在这里插入图片描述
在这里插入图片描述

KMP算法

  1. 对模式串预处理,生成next数组

  2. 进入主循环,遍历主串

    2.1. 比较主串和模式串的字符

    2.2. 如果发现坏字符,查询next数组,得到匹配前缀所对应的最长可匹配前缀子串,移动模式串到对应位置

    2.3.如果当前字符匹配,继续循环

时间复杂度是O(m+n)
空间复杂度是O(n),n为模式串的长度,m为主串长度

// next[i]=j 其中i表示“已匹配前缀的下一个位置”,即待填充的数组next下标,j表示“最长可匹配前缀子串的下一个位置”,也就是待填充的数组元素next[i]的值
// next[i]  表示s[0...i+1]中,最长可匹配的前缀子串的下一个位置
    private static int[] getNexts(String pattern) {
        int[] next = new int[pattern.length()];
        // i为next数组索引,等待填充的下一个元素位置
        // j代表最长可匹配前缀子串的下一个位置,所以next[i]要置为j
        int j = 0;
        for (int i=2; i<pattern.length(); i++) {
            while (j != 0 && pattern.charAt(j) != pattern.charAt(i-1)) {
                //发现不匹配,找当前最长可匹配前缀子串的最长可匹配前缀子串,即j= next[j],直到匹配到(更新next数组为j)或者j=0(next数组为0)
                j = next[j];
            }
            // 如果已经匹配上,最长可匹配前缀子串的位置后移1位
            if (pattern.charAt(j) == pattern.charAt(i-1)) {
                j++;
            }
            next[i] = j;
        }
        return next;
    }

    // kmp算法的特殊性,在于每次都找最长前缀/后缀匹配子串bothSub,移动模式串的时候不用每次暴力移动1,可以找到bothSub的下一个位置进行继续匹配,不过并不是直接模式串后移bothSub的长度
    // 另一个难点在于getNexts数组,其实理解了也没那么难
    private int kmp(String str,String pattern){
        int[] next = getNexts(pattern);
        int m = pattern.length();
        int n = str.length();
        // j代表模式串中当前最长可匹配前缀子串的下一个位置
        int j = 0;
        // 遍历主串
        for(int i = 0;i< n;i++){
           while(j!=0 && pattern.charAt(j) != str.charAt(i)){
               // 遇到坏字符,从next数组中找pattern中最长前缀子串的下一个位置,j从此位置继续和主串的i位置进行匹配。不要理解为此时模式串一次性移动了next[j]哦
               j = next[j];
           }
           if(pattern.charAt(j) == str.charAt(i)){
               j++;
           }
           // 全部匹配完成 返回主串中匹配串的头部索引:(i+1 -m)
            if(j == m){
                return i-m+1;
            }
        }
        return -1;
    }

public static void main(String[] args) {
    String str = "ATGTGAGCTGGTGTGTGCFAA";
    String pattern = "GTGTGCF";
    int index = kmp(str, pattern);
    System.out.println("首次出现位置:" + index);
}

具体next数组如何获取的图解详见:什么是KMP算法

附上力扣题型,28题 找出字符串中第一个匹配项的下标

//给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。
//如果 needle 不是 haystack 的一部分,则返回 -1 。 
//
// 
//
// 示例 1: 
//
// 
//输入:haystack = "sadbutsad", needle = "sad"
//输出:0
//解释:"sad" 在下标 0 和 6 处匹配。
//第一个匹配项的下标是 0 ,所以返回 0 。
// 
//
// 示例 2: 
//
// 
//输入:haystack = "leetcode", needle = "leeto"
//输出:-1
//解释:"leeto" 没有在 "leetcode" 中出现,所以返回 -1 。
// 
//
// 
//
// 提示: 
//
// 
// 1 <= haystack.length, needle.length <= 10⁴ 
// haystack 和 needle 仅由小写英文字符组成 
// 
//
// Related Topics 双指针 字符串 字符串匹配 👍 2161 👎 0

package leetcode.editor.cn;

import com.sun.xml.internal.ws.util.StringUtils;

import java.util.ArrayList;
import java.util.List;

//Java:找出字符串中第一个匹配项的下标
public class FindTheIndexOfTheFirstOccurrenceInAStringXXX28{
public static void main(String[] args) {
Solution solution = new FindTheIndexOfTheFirstOccurrenceInAStringXXX28().new Solution();
// TO TEST
    int i = solution.strStr("sadbutsad", "saed");
    System.out.println(i);
}
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
    public int strStr(String haystack, String needle) {

        /*
        // 普通做法 又称BF(Brute Force 暴力匹配),时间复杂度为m*n
        // 但是就是普通的字符串匹配的解法,因为一般字符串都比较短,这个复杂度可以接受,并且非常简单,Java中的indexOf()之类的都是这么实现的
        if(needle == null || haystack == null) return -1;
        int fast = 0,slow = 0;
        while(fast<haystack.length()){
            int f =0;
            while(f < needle.length() && fast < haystack.length() &&
                    haystack.charAt(fast) == needle.charAt(f)){
                fast++;
                f++;
            }
            if(f == needle.length()){
                return slow;
            }
            slow++;
            fast = slow;
        }
        return -1;*/
        // 第二种办法是,RK算法,名字是两个人命名 不重要。重要的是方法:获取原串中所有跟匹配串相等长度的子串,根据hash值来判断子串和匹配串是否相等
        // 那么时间复杂度1:获取所有子串的hash值:最快为只遍历一遍主串,O(n);复杂度2:子串和匹配串的比较,比较是O(1),共比较n-m+1次,即O(n),所以RK算法的时间复杂度是o(n)
        // 再说一下获取hash值的方法,可以直接指定12345,也可以借助十进制的方式求hash值,这样可以在遍历子串求hash值的时候可以根据前一个子串得出当前子串的hash值,只有O(n)的复杂度
        // 例如,如果字符串都是a-z的小写字母,那么可以指定a的hash值为0,b为1,那么"abc"子串的hash值为0*26^2 + 1*26+2。这样的话,遍历子串求hash值的时候,前后两个子串之间的差值就很有规律(这里的规律就不列出了,纯数学),所以复杂度就只有n


        // 第三种,KMP做法,理论上讲就是讲复杂度降低到m+n,
        // 也就是说去掉一些冗余的操作,找到每次匹配串匹配的后移最大值
        // 有两个概念:最长子前缀和最长子后缀,找最长的相等前缀和后缀(最长公共前后子缀)。例如ababa的最长子前缀为aba,最长后前缀为aba;abaaaab为ab。
        // 找到之后,当需要后移时,每次匹配串后移的距离就是最长子后缀的首字符位置,降低复杂度,这里就需要一个next[]数组来保存最长子后缀的首字符位置,注意next的0和1索引位可置为0,1对应字符串的首位,以便后续处理
        // 这里说明一个next数组的怎么获取,从i=0,j=2开始,如果字符串p[i]!=p[j-1] next[i]=i;
        int n = needle.length();
        char[] p = needle.toCharArray();
        int[] next = new int[n+1];
        for(int j = 2, i = 0; j <= n; j++)  //从j = 2开始计算
        {
            // 要用while循环;
            // 这里i=next[i]解释:此时左指针走到了i,右指针走到了j,当p[i] != p[j - 1]时,找公共最长后缀的首字符位置,不就是(0-i)之间的子串的公共最长后缀的首字符位置吗(因为此时0-i和x-j两串就是最长子缀,在此范围里找最长就是在0-i之间找最长公共或者说是在x-j之间找),也就是next[i]
            while(i > 0 && p[i] != p[j - 1]) i = next[i];
            if(p[i] == p[j - 1]) i++;
            next[j] = i;
        }
        // 下一步就是匹配了,
        char[] s = haystack.toCharArray();
        List<Integer> res  = new ArrayList<>();
        for(int i = 0, j = 0; i < s.length; i++)
        {
            // 匹配失败 调整 j 的位置
            while(j > 0 && s[i] != p[j]) j = next[j];
            // 当前字符匹配成功, j++继续匹配
            if(s[i] == p[j]) j++;
            if(j == p.length)
            {
                // j到了子串p末尾,说明 完全匹配到了一个答案,记录结果,然后继续调整j寻找
                res.add(i - j + 1);
                j = next[j];
            }
        }
        return res.isEmpty()?-1:res.get(0);
    }
}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值