estimateGaussian.m
function [mu sigma2] = estimateGaussian(X)
%ESTIMATEGAUSSIAN This function estimates the parameters of a
%Gaussian distribution using the data in X
% [mu sigma2] = estimateGaussian(X),
% The input X is the dataset with each n-dimensional data point in one row
% The output is an n-dimensional vector mu, the mean of the data set
% and the variances sigma^2, an n x 1 vector
%
% Useful variables
[m, n] = size(X);
% You should return these values correctly
mu = zeros(n, 1);
sigma2 = zeros(n, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the mean of the data and the variances
% In particular, mu(i) should contain the mean of
% the data for the i-th feature and sigma2(i)
% should contain variance of the i-th feature.
%
mu = sum(X)' / m; %sum是对X按列求和的意思
temp = X' - repmat(mu,1,m); %repmat(A,m,n),把矩阵A复制m*n份,行为m,列为n
%这里也可用temp = bsxfun(@minus, X', mu)
sigma2 = sum(temp.^2,2) / m; %sum(A,2)对矩阵按列求和
% =============================================================
end
selectThresold.m
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
%outliers
% [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
% threshold to use for selecting outliers based on the results from a
% validation set (pval) and the ground truth (yval).
%
bestEpsilon = 0;
bestF1 = 0;
F1 = 0;
stepsize = (max(pval) - min(pval)) / 1000;
for epsilon = min(pval):stepsize:max(pval)
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the F1 score of choosing epsilon as the
% threshold and place the value in F1. The code at the
% end of the loop will compare the F1 score for this
% choice of epsilon and set it to be the best epsilon if
% it is better than the current choice of epsilon.
%
% Note: You can use predictions = (pval < epsilon) to get a binary vector
% of 0's and 1's of the outlier predictions
cvPrediction = pval < epsilon; %yval小于ipsilon则置1否则置0
tp = sum((cvPrediction == 1) & (yval == 1)); %cvPrediction为我们的预测值,yval为实际值
fp = sum((cvPrediction == 1) & (yval == 0));
fn = sum((cvPrediction == 0) & (yval == 1));
prec = tp / (tp + fp);
rec = tp / (tp + fn);
F1 = 2 * prec * rec / (prec + rec);
cofiCostFunc.mfunction [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ... num_features, lambda) %COFICOSTFUNC Collaborative filtering cost function % [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ... % num_features, lambda) returns the cost and gradient for the % collaborative filtering problem. % % Unfold the U and W matrices from params X = reshape(params(1:num_movies*num_features), num_movies, num_features); Theta = reshape(params(num_movies*num_features+1:end), ... num_users, num_features); % You need to return the following values correctly J = 0; X_grad = zeros(size(X)); Theta_grad = zeros(size(Theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost function and gradient for collaborative % filtering. Concretely, you should first implement the cost % function (without regularization) and make sure it is % matches our costs. After that, you should implement the % gradient and use the checkCostFunction routine to check % that the gradient is correct. Finally, you should implement % regularization. % % Notes: X - num_movies x num_features matrix of movie features % Theta - num_users x num_features matrix of user features % Y - num_movies x num_users matrix of user ratings of movies % R - num_movies x num_users matrix, where R(i, j) = 1 if the % i-th movie was rated by the j-th user % % You should set the following variables correctly: % % X_grad - num_movies x num_features matrix, containing the % partial derivatives w.r.t. to each element of X % Theta_grad - num_users x num_features matrix, containing the % partial derivatives w.r.t. to each element of Theta % J = (1/2).*sum(sum(((X*Theta').*R-Y.*R).^2))+(lambda./2.*sum(sum(Theta.^2)))+(lambda./2.*sum(sum(X.^2))); % Only predict rating X*Theta' if user has rated (i.e. R=1) X_grad = (((X*Theta').*R*Theta-Y.*R*Theta)+lambda.*X); Theta_grad = ((X'*((X*Theta').*R)-X'*(Y.*R)))'+lambda.*Theta; % ============================================================= grad = [X_grad(:); Theta_grad(:)]; end
% ============================================================= if F1 > bestF1 bestF1 = F1; bestEpsilon = epsilon; endendend