数据结构和算法的重要性
- 算法是程序的灵魂,优秀的程序可以在海量数据计算时,依然保持高速计算。
- 一般来讲程序会使用内存计算框架(比如Spark)和缓存技术(比如Redis等)来优化程序,再深入的思考一下,这些计算框架和缓存技术,它的核心功能是哪个部分呢?
- 拿实际工作经历来说,在Unix下开发服务器程序,功能是要支持上千万人同时在线,在上线前做内测,一切OK,可上线后,服务器就支撑不住了,公司的CTO对代码进行优化,再次上线,坚如磐石,你就能感受到程序是有灵魂的,就是算法。
- 目前程序员面试的门槛越来越高,很多一线IT公司(大厂),都会有数据结构和算法面试题。
- 如果你不想永远都是代码工人,那就花时间来研究一下数据结构和算法。
数据结构和算法概述
数据结构和算法的关系
- 数据结构是一门研究组织数据方式的科学,有了编程语言也就有了数据结构。学好数据结构可以编写出更加漂亮、更加有效率的代码。
- 要学习好数据结构就要多多考虑如何将生活中遇到的问题,用程序去实现解决。
- 程序 = 数据结构 + 算法
- 数据结构是算法的基础,换言之,想要学好算法,需要把数据结构学到位。
线性结构和非线性结构
数据结构包括:线性结构和非线性结构。
线性结构
- 线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系。
- 线性结构有两种不同的存储结构,即顺序存储结构和链式存储结构。顺序存储的线性表称为顺序表,顺序表中的存储元素是连续的。
- 链式存储的线性表称为链表,链表中的存储元素不一定是连续的,元素节点中存放数据元素以及相邻元素的地址信息。
- 线性结构常见的有:数组、队列、链表和栈。
非线性结构
非线性结构包括:二维数组、多维数组、广义表、树结构、图结构。