292. Nim Game的C++解法

考虑:

1.有1,2,3颗石子,我方可以直接取胜。

2.有4颗石子,我方无论如何都不可能取胜,因为无论怎么拿都会给对方剩下正好能取走的石子。

   (可以发现,剩4颗石子的时候谁先手谁输。)

3.有5,6,7颗石子,我方可以通过拿1,2,3颗石子,使局面变成剩4颗石子且对方先手。

4.有8颗石子,我方无论怎样拿,对方都可以造成剩4颗石子且我方先手的局面,我方不可能赢。

5.以此类推,只要是4的倍数,我方不可能赢。


代码:

class Solution {
public:
    bool canWinNim(int n) {
        return (n%4!=0);
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值