添加BN层到deeplabV2

deeplabV2工程

这个工程里的caffe版本比较老,里面有很多写法和新版本不一样需要大改。、

把新版caffe叫做A,deeplabV2版本叫做B

1.添加.cpp,.cu和.hpp文件

2.修改caffe.proto,添加option和param参数
3.layer_factory.cpp里没有注册BN层,不用改这个文件
(以上跟网络上的教程没有区别)


4.在caffe.proto里面加一个Specparam类型(直接从A中复制)
4.A版BN层注册只需要一个参数,B版本注册需要两个参数,改成REGISTER_LAYER_CLASS(BatchNorm,BatchNormLayer);
5.两个版本在layer.hpp中定义的type返回方法不同。
  a.caffe.proto里的enum里添加BATCH_NORM类型。
  b.batch_norm_layer的第49行代码改为
    virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_BATCH_NORM;
  }

  

后面错误太多了改不下去了 有成功的告诉我。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在PyTorch中,在迁移网络中添加Batch Normalization(BN)层的代码实现如下: 首先,我们假设已经加载了一个预训练的模型,现在需要在模型的某些层中添加BN层。下面是一个示例,假设我们要在模型的第一个卷积层后添加BN层: ```python import torch import torch.nn as nn import torchvision # 加载预训练的模型 model = torchvision.models.resnet18(pretrained=True) # 冻结模型的参数,只迁移权重 for param in model.parameters(): param.requires_grad = False # 在模型的第一个卷积层后添加BN层 model.conv1 = nn.Sequential( model.conv1, nn.BatchNorm2d(64) ) # 替换最后一层分类器(全连接层) num_features = model.fc.in_features model.fc = nn.Linear(num_features, num_classes) # 将模型发送到设备(如GPU) model = model.to(device) # 优化器和损失函数的定义 optimizer = torch.optim.SGD(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() # 训练和验证循环 for epoch in range(num_epochs): # 训练 model.train() for images, labels in train_loader: images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 验证 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in val_loader: images = images.to(device) labels = labels.to(device) # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print(f"Epoch {epoch+1}/{num_epochs} - Validation accuracy: {accuracy:.2f}%") ``` 在这个示例中,我们首先加载了一个预训练的ResNet-18模型。然后,我们冻结了所有参数,只迁移了权重。接下来,我们使用`nn.Sequential`将BN层添加到模型的第一个卷积层之后。然后,我们将最后的分类器层替换为具有正确输出数量的线性层。最后,我们定义优化器和损失函数。 在训练和验证循环中,我们首先将模型设置为训练模式,然后对于每个训练图像批次,进行前向传播、计算损失、反向传播和优化。然后,我们将模型设置为评估模式,并对验证集进行前向传播来计算准确度。最后,我们打印出每个epoch的验证准确度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值