Linux服务器安装anaconda、虚拟环境配置、换源、清华镜像

本文详细介绍如何下载并安装Anaconda,包括环境配置步骤、换源方法及虚拟环境的创建与激活,帮助读者快速掌握Anaconda的基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载anaconda安装包

地址: [安装包地址],选择对应版本下载,或命令行直接下载到服务器。(https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/)

安装

(1)在安装包所属目录下输入命令:bash 安装包名称,回车;
(2)持续按回车直到出现安装路径,默认安装到当前路径,如不需要更改,直接输入yes,然后回车;
(3)系统会自动导入相关包,结束后可输入命令:conda list查看是否成功,成功会列出已经导入的包,若提示 command not found,需进行环境配置。

环境配置(安装成功可忽略)

(1)输入命令:vi ~/.bashrc,回车;
(2)点字母“i”进入编辑模式,输入:export PATH=/home/服务器用户名/anaconda3/bin:$PATH
(3)按“esc”键,然后输入“:wq”,回车
(4)输入命令:source ~/.bashrc,回车
完成。

换源

通常在进行pip安装python的包时会抱错,时下载过慢导致,分别输入一下两行命令进行换源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

创建、激活虚拟环境

输入命令:conda create -n 自己想创建的虚拟环境名称 python=当前python版本,回车
使用时先输入命令:sourceactivate 自己创建的虚拟环境名称,回车;后续安装第三方包时先激活虚拟环境再安装,否则会安装到原始环境中。

### 配置过程 #### 1. 安装 Anaconda 在 Ubuntu 服务器安装 Anaconda配置 PyTorch 环境的第一步。可以通过下载官方脚本并运行来完成安装。 首先,在终端中执行以下命令以获取最新的 Anaconda 脚本: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh ``` 接着赋予该文件可执行权限并启动安装程序: ```bash chmod +x Anaconda3-2023.07-1-Linux-x86_64.sh ./Anaconda3-2023.07-1-Linux-x86_64.sh ``` 在此过程中,按照提示输入 `yes` 接受协议,并指定安装路径[^2]。 完成后初始化 Conda 并激活它: ```bash source ~/.bashrc ``` #### 2. 创建虚拟环境 为了隔离不同项目的依赖关系,建议为 PyTorch 单独创建一个虚拟环境。可以使用如下命令实现: ```bash conda create -n pytorch_env python=3.9 ``` 这里 `-n` 参数指定了新环境的名字(此处命名为 `pytorch_env`),而 `python=3.9` 表明此环境中使用的 Python 版本号[^3]。 随后切换到刚创建好的虚拟环境中去工作: ```bash conda activate pytorch_env ``` #### 3. 更改镜像源 (可选) 如果发现默认的网络速度较慢,则推荐更改成国内清华 TUNA 或中科大等快速镜像站点。例如设置 PyTorch 的镜像地址如下所示: ```bash conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes ``` 上述操作会显著提升后续包管理器工作的效率[^4]。 #### 4. 安装 PyTorch 及其相关组件 最后一步就是实际安装 PyTorch 库本身以及可能需要用到的一些额外工具集比如 CUDA 支持版本的选择等等。具体可以根据个人需求调整参数;下面给出的是最基础形式下的例子: 对于 CPU-only 场景: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 而对于 GPU 加速的情况则需替换最后一项为对应的 cuda 编译选项,如: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 以上步骤即完成了整个基于 Anaconda 构建适用于深度学习框架 PyTorch 开发所需的基础软硬件设施搭建流程[^1]。 ### 注意事项 确保每一步都成功后再继续下一步骤,尤其是确认 conda 已经被正确加载至当前 shell session 中再尝试任何涉及 package manager 的动作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值