周志华 西瓜书 第四章 支持向量机

5.1 支持向量机基本型

线性分类回归:在样本空间中寻找一个超平面,将不同类别的样本分开。
在这里插入图片描述
间隔Margin与支持向量Support Vector
在这里插入图片描述
超平面方程等于1的超平面 距离方程等于0 的距离是 1/||w||, 正例=1到反例=-1方程的距离就是 2/||w||。
距离超平面的距离越远,这个分类的超平面把握是最大的。
在这里插入图片描述
约束的意思:默认所有的点在+ - 1 之外。
我们习惯解决最小化问题,将最大转化成最小。
凸二次规划问题
将训练样本分开的超平面仅由支持向量决定

5.2 对偶问题与解的特性

通过拉格朗日乘子法可以得到支持向量机的对偶问题
在这里插入图片描述
在这里插入图片描述
最后解只和间隔上的点有关。

  • 对偶问题需要满足KKT条件
  • 通过对偶问题推导出的模型表达式能够体现解的稀疏性
  • 对偶问题的最优值是原始问题最优值的下界
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值