为什么说 AI 编程是人人都需要掌握的新技能?

▼最近直播超级多,预约保你有收获

今晚直播:AI 编程技术架构剖析和案例开发实战

 1

AI 编程能做哪些工作?

我们先来分析下软件产品的研发流程,有以下2类重要部分:

第一部分:业务需求分析、领域建模、架构设计、架构选型、详细设计、模块耦合设计、接口设计、测试设计、运维设计等。

第二部分:代码编写、写测试用例、写运维脚本、写注释、线上问题定位与分析、Code Review 等。

第一部分属于软件抽象层次比较高的部分,第二部分属于软件抽象层次比较低的部分。

很多软件项目实践都表明 AI 编程在细颗粒度、抽象层次较低的任务上,表现非常好。但在大颗粒度、抽象层次较高的任务上,表现比较差。而大颗粒度、高抽象的设计才是软件开发中核心的核心—抵抗软件的复杂性。

正如面向对象大师 Grady Booc h在回复 Andrej Karpathy 的“The hottest new programming language is English” 争论时,也鲜明地指出“整个软件工程的历史就是不断提升抽象层次”。

而这一点和 AI 编程 将人类知识“不断压缩、进而抽象”的发展路径不谋而合。

 2

程序员的核心竞争未来在哪里?

第一、学会使用 AI 编程,掌握 AI 编程的同学一定会比没有此项技能的同学更有竞争力。

第二、在 AGI 时代,软件开发中比较难被 AI 编程替代的部分主要包括以下抽象层次较高的任务::需求分析、领域建模、架构设计、详细设计、模块耦合性设计、接口设计、开发者测试设计等。所以 AI 智能时代,程序员最重要的技能要聚焦在上述抽象层次较高的任务,才能有持续的竞争力。

第三、软件开发 = 抽象层次较高的任务 + 抽象层次较低的任务(编码),我们学会利用 AI 编程高效解决抽象层次较低的任务,同时借助于 LLM 大模型(比如:GPT 4 Turbo)作为我们的 Copilot,辅助解决抽象层次比较高的任务。

第四、对于抽象层次高的任务,LLM 大模型未来一定无能为力吗?理论上来讲,人类大脑的生物神经网络可以掌握的,基于 LLM 大模型的数字神经网络一定也可以。能不能实现主要看 LLM 大模型训练数据的质量、RLHF 中的人类反馈、Fine-tuning、Prompt 等环节是否能将软件行业积累这么多年的各种“抽象”的优秀实践都学习掌握到?至少目前以 GitHub、CodeParrot 开源代码为主要训练数据来源的 LLM 大模型在这方面表现还有相当大的距离。

我相信这也将是软件领域今后长期活跃的研究方向。但这一定是一个渐进、漫长的过程。

3

纯干货 AI 编程技术实战直播

为了帮助同学们掌握好 AI 编程技术架构和应用案例实战,今晚20点,我和陈东老师会开一场直播和同学们深度聊聊 AI  编程框架架构剖析、AI 编程 核心技术设计原理剖析、基于 AI 编程构建企业级架构应用案例实战请同学点击下方按钮预约直播,咱们今晚20点不见不散哦~~

近期直播:AI 编程技术架构剖析和案例开发实战

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值