▼最近直播超级多,预约保你有收获
今晚直播:《ChatGPT Code Interpreter 架构设计与实现》
—1—
ChatGPT Code Interpreter 架构设计
Code Interpreter 本质是一个 AI Agent,借助于大模型代码生成能力,在理解客户自然语言描述问题基础上,通过输出代码(常见 Python)并自动迭代执行与调整,最终完成客户任务。由于其非常擅长处理数据分析任务(但不限于此),在 ChatGPT 中该工具后来改名为高级数据分析。简单说,这就是一种文本转代码(Text2Code)的自动化方案。因此,它的核心能力是通过运行代码的方式完成用户的多模态 Prompt 请求,它由以下几个子能力构成。
第一、对用户输入的 Prompt 提示词进行规划拆解,并生成对应的可执行 Pyhton 代码;
第二、提供了对 Python 代码可以执行的沙箱 SandBox 环境;
第三、对 Python 代码进行执行,并对代码执行异常自动调整;
第四、通过引入 Python 的 numpy/pandas 等语音库、图像库,实现了多模态的支持。
需要重点强调的一点是,Code Interpreter 的推理引擎并不是 GPT-4,而是gpt-4-code-interpreter,这个大模型推理引擎是基于 GPT-4 通过大量 Python 代码微调(Fine-tuning)出来的新模型,此模型更擅长 Python 代码的生成。
那么怎么才能实现一个 Code Interpreter ?主要有以下几个核心步骤:
第一、架构设计,采用 LLM + Planning + Memory + Use Tools 的组合 Copilot Agent 架构设计,其中 LLM 选用 GPT 4 Turbo。
第二、支持 Python 代码运行,因此 Python 代码执行器采用本地的 iPython 运行环境或者云端的 CodeBox。
第三、Copilot Agent 的 Agent 框架,我们采用 LangChain 最新的 OpenAIFunctionAgent 框架。
第四、Planning 规划模块,我们采用类似人类对复杂问题思考拆解的 ReAct 模式(Thought-Aciton-Observation 模式)。
第五、Memory 记忆模块采用 Milvus 向量数据库来存储长期记忆数据,短期记忆数据我们直接存储在 Code Interpreter 内存里。
更详细的架构设计细节和代码实现,为了更充分给同学们讲解,今晚我会开一场直播详细来剖析,请同学点击免费预约。
—2—
纯干货 Code Interpreter 技术实战直播
为了帮助同学们掌握好 Code Interpreter 技术架构和落地实现细节,今晚20点,我会开一场直播和同学们深度聊聊:
1、Code Interpreter 架构核心设计剖析
2、基于 Assistants API 实现Code Interpreter
3、基于 LangChain + LLM 实现 Code Interpreter
4、Code Interpreter 实现难点及解决方案
请同学点击下方按钮预约直播,咱们今晚20点不见不散哦~~
今晚直播:《ChatGPT Code Interpreter 架构设计与实现》
END