大家好,我是玄姐。
Model Context Protocol(MCP)模型上下文协议是一种标准化协议,它让大模型能够更便捷地与外部数据、工具相连。你可以把 MCP 想象成一个通用的插头或接口,就像 USB-C 一样,不管是什么设备,只要插上这个接口,就能和电脑、充电器等连接起来。只不过,MCP 连接的不是物理设备,而是 AI 大模型与外部的数据源、工具等。
有了 MCP,AI 大模型就能更轻松地获取外部信息,完成更多任务。比如,通过 MCP,AI 大模型可以操作电脑读写文件,或者模拟浏览器操作等。
—1—
MCP 架构设计剖析
第一、MCP 架构设计
MCP 包含三大核心模块:MCP Hosts、MCP Clients、MCP Servers。
MCP Hosts:像 Claude Desktop、Cursor 这样的应用程序,它们通过 MCP Client 访问数据。
MCP Clients:与 MCP Server 服务器保持 1:1 连接的协议客户端。
MCP Servers:轻量级程序,每个 AI 程序都通过标准化的模型上下文协议公开特定功能。
第二、Java MCP 架构设计案例
结合 AI 大模型,以一个 Java AI 应用(比如:AI Agent 智能体)为例,Java MCP 架构设计如下所示:
可以看到 Java MCP 架构设计的传输层有两类:Stdio Transport、HTTP SSE,如下图所示:
第三、MCP 架构设计的工作模式
MCP Server 可以以工具(Tools)的形式配置到 MCP Client 中。当我们向 MCP Host 发送执行指令时,MCP Host 会携带这些工具信息,一起发送给 AI 大模型。随后,AI 大模型会进行意图识别和语义分析,并调用 MCP 来执行具体的业务需求,处理逻辑时序图如下图所示:
上图大致的处理逻辑,总结如下6步:
1、读取配置文件,运行所有 MCP Servers,获取可用的 Tools;
2、用户与 LLM 对话(附带所有 Tools 名称描述,参数定义);
3、LLM 识别到要执行某个Tool,返回名称和参数;
4、找到对应 MCP Server 的 Tool,调用执行,返回结果;
5、把工具执行结果提交给 LLM;
6、LLM 返回分析结果给用户。
你可以把 MCP 想象成你雇来的得力助手,你只需要告诉他你的想法,他就会负责跑腿和执行具体任务,而你只需负责下达指令和验收最终结果。
以下使用 Spring AI + MCP 四步教你实现 Agent 智能体开发。
—2—
MCP Server 开发步骤
本节手把手教您搭建一个基于 Spring AI MCP 的 Java MCP Server,让您能够在各类客户端轻松调用企业级 AI 服务。借助这一方案,您可以将业务逻辑与工具无缝融入 AI 交互流程,为用户提供更智能、更贴合业务场景的体验。
第一、准备环境
<dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-mcp-server-webmvc-spring-boot-starter</artifactId></dependency>
第二、业务逻辑实现
@ServicepublicclassMeilisearchService { @Tool(description = "PIG ISSUE 知识库检索,解决用户技术问题 ") public String queryQuestion(@ToolParam(description = "用户的技术问题描述 ") String question) { Clientclient=newClient(newConfig())); SearchResultresults= client.index("pigx-doc") .search(newSearchRequest(question) .setShowMatchesPosition(true) .setSort(newString[]{"lvl2:desc"}) .setLimit(1)); return results.getHits().stream() .map(hit -> "【"+hit.get("lvl0")+"】"+hit.get("text")) .collect(Collectors.joining("\n\n")); }}
第三、服务注册
@Configuration public class McpConfig { @Bean public ToolCallbackProvider documentTools(MeilisearchService searchService) { return MethodToolCallbackProvider.builder() .toolObjects(searchService) .build(); }}
—3—
MCP Client 配置
第一、MCP Clent 通用配置
{ "mcpServers":{ "pig-issue":{ "isActive":true, "command":"java", "args":[ "-Dspring.ai.mcp.server.stdio=true", "-jar", "/Users/lengleng/env/repository/io/github/pig-mesh/pig-issue-query-mcp/0.0.1-SNAPSHOT/pig-issue-query-mcp-0.0.1-SNAPSHOT.jar" ] }}}
第二、图形化配置
1、Cherry 客户端配置界面
2、客户端配置界面
第三、效果展示
—4—
MCP 架构设计总结
总体而言,MCP 解决了 Client 和 Server 之间的数据交互问题,但在 LLM 到 Tool 的对接上仍有不足:不同模型对 Function Call 的支持程度参差不齐,例如 DeepSeek R1 就不支持,这就导致了工具路由的问题。
第一、不足之处
1、开源时间较短:目前还不够完善,语言支持有限,示例代码也不够丰富。
2、MCP Server 质量参差不齐:缺乏统一的质量保障体系和包管理工具,许多 MCP Server 无法正常运行,或者频繁崩溃。
3、本地 MCP Server 依赖特定环境:本地 MCP Server 仍依赖 Node.js 或 Python 环境,而远程 MCP Server 的支持较少。
第二、未来展望
如果未来更多 AI 应用开始接入 MCP 协议,生态逐渐完善,其能力将非常强大。随着使用人数的增加,会有更多 AI 应用愿意对接,真正实现一套代码在所有地方运行。
个人认为,MCP 仍有很大的发展潜力,未来可期!
PS:
推荐大家加入《3天 基于 MCP 的 Agent 项目实战直播训练营》,为了帮助大家快速和低成本掌握 AI Agent 智能体技术,我和团队落地大模型项目3年,帮助60多家企业落地近100个项目,根据我们企业级实战的项目经验,打造基于 MCP、Manus、DeepSeek 的 AI Agent 项目实战直播训练营,截至今天已经报名2万名学员,如此火爆!原价199元,为了回馈粉丝的支持,价格直接降到 19元,点击以下报名。
—5—
3天 Agent 智能体项目实战直播课
3天的直播课,带你快速掌握基于 MCP、Manus、DeepSeek 的AI Agent 智能体核心技术和企业级项目实践经验。
模块一:AI Agent 智能体技术原理篇
全面拆解 AI Agent 智能体技术原理,深度掌握基于 MCP、Manus、DeepSeek 的 AI Agent 智能体三大能力及其运行机制。
模块二:AI Agent 智能体应用开发实战篇
深度讲解基于 MCP、Manus、DeepSeek 的 AI Agent 智能体技术选型及开发实践,学会开发 AI Agent 智能体核心技术能力。
模块三:AI Agent 智能体企业级案例实战篇
基于 MCP、Manus、DeepSeek,从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI Agent 智能体项目全流程重点难点问题解决。
3天时间,你能学会什么?
在真实项目实践中,你会获得4项硬核能力:
第一、全面了解 DeepSeek 大模型、MCP、Manus、AI Agent 智能体的原理、架构和实现方法,掌握核心技术精髓。
第二、熟练使用 Dify/Coze 平台、MCP、Manus、DeepSeek、LangChain、AutoGen 等开发框架,为企业级技术实践打下坚实基础。
第三、通过企业级项目实战演练,能够独立完成基于 MCP、Manus、DeepSeek 的 AI Agent 智能体的设计开发和维护,学会解决企业级实际问题的能力。
第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升核心技术竞争力。
限时优惠:
原价199元,回馈粉丝们支持,现在报名只需19元!赶快加入把~~
—6—
添加助教直播学习
购买后,一定记得添加助理,否则无法进行直播学习👇
⬇戳”阅读原文“,立即报名!
END