告别传统 RAG,私有知识库 + DeepSeek,打造本地版 Deep Research

大家好,我是玄姐。

▼最近直播超级干,预约保你有收获

近期,Open AI 推出的 Deep Research(深度研究)功能引发了广泛关注。该功能通过整合大模型、超级搜索和研究助理于一体,使得能够一键生成报告,科研人员能够一键撰写综述,极大提升了效率。然而,由于企业场景中私有化数据的敏感性和成本考虑,如何将 Deep Research 进行开源的本地化部署,成为许多人的关注焦点。

在这篇文章中,我们将对市场上模仿 Deep Research 的开源项目进行简要分析,并结合 Deepseek 等主流开源模型,Zilliz 推出一款名为 Deep Searcher 的开源项目。该项目的目标是帮助用户在企业级场景下,基于 Deep Research 的思路,实现私有化部署。此外,此方案在现有的 RAG(Retrieval-Augmented Generation)方案上进行了重要升级。

GitHub 地址

https://github.com/zilliztech/deep-searcher

1

什么是 Deep Research,为什么需要开源平替?

最近,OpenAI 推出了一款先进的 AI 研究工具——Deep Research,目的是为了帮助用户更高效地处理复杂的研究工作。这款工具基于 OpenAI 最新的 o3 大模型,特别针对网络浏览和数据分析进行了优化。

第一、核心功能

  • 多阶段信息搜集与推理:Deep Research 能够自动执行多阶段的网络调研,迅速整合网络上的大量信息,涵盖文本、图片和 PDF 文件。

  • 专业报告自动生成:通过分析综合数百个在线资源,Deep Research 可以在5至30分钟内生成一份包含详细引用的专业报告,显著减少传统研究所需的时间。

第二、应用场景

  • 学术研究:学者和研究人员可以利用 Deep Research 快速搜集相关领域的深入资料,辅助撰写论文和进行研究。

  • 市场分析:企业可以使用此工具进行市场调研、竞争分析和产品比较,为商业决策提供支持。

  • 产品评估:消费者可以利用 Deep Research 比较不同产品的特点和评价,做出更明智的购买选择。

总体而言,Deep Research 作为 OpenAI 推出的深度研究产品,旨在通过自动化的信息搜集和分析,助力用户高效完成复杂的研究任务

第三、开源解决方案

目前,大多数用户尚无法使用 OpenAI 的 Deep Research 功能。不过,自从 OpenAI 发布该功能后,许多开源社区的贡献者开始分析并尝试复现这一功能。

GitHub 上已经出现了多个开源方案,它们的实现流程大致分为以下四个步骤

  • 第一步、问题分析:大模型分析用户提出的问题,确定回答问题所需的角度和步骤。许多大模型(比如:DeepSeek、Qwen3 等)只需开启推理选项即可完成这一过程。

  • 第二步、在线搜索:根据大模型生成的问题进行在线搜索,获取搜索结果的前 K 项,并将内容反馈给大模型。

  • 第三步、内容总结:大模型根据在线内容生成简洁的答案。

  • 第四步、答案验证:将所有内容汇总后,由大模型判断答案的完整性和准确性。

如果答案完整且准确,则输出最终答案。如果达到预设的循环次数或 token 上限,同样输出最终答案。否则,生成新问题,返回第一步,并将历史解决信息带入下一轮循环

2

相比传统 RAG,Deep Research 有何亮点与不足

相较于之前的 RAG(Retrieval-Augmented Generation)方案,新方案实现了以下三个方面的创新。

  • 第一、判定逻辑:通过引入额外的判定逻辑,提升了答案的精确度。Deep Research 利用多源验证、逻辑推理等质量控制手段,确保了研究成果的可靠性,并有效避免了传统 RAG 中常见的无目的检索和过度检索问题。与传统的 RAG 相比,Deep Research 在信息整合和验证方面更为严谨。

  • 第二、以搜索结果为核心:答案主要基于搜索结果而非单纯依赖大模型的生成。大模型的作用在于内容汇总和相关性判断,从而增强了答案的可靠性。

  • 第三、深度思考与处理复杂任务:Deep Research 能够模仿人类研究员进行多阶段的网络研究,理解信息、整合资源,并根据新发现调整研究策略。这种自主进行多步骤问题解决的能力,是普通 RAG 所不具备的。

虽然这些优势显著,但 Deep Research 也存在一些不足。从前面提供的方案中可以看出,Deep Research 的响应速度较慢,对计算资源和网络环境的要求也更高。更重要的是,其答案的主要信息来源依然是公开的网络搜索结果

然而,在大多数企业场景中,真正有价值的数据通常是企业的内部数据,这些数据无法通过在线搜索获取,也不适合上传至大模型以避免隐私泄露的风险。此外,在线搜索引擎的结果可能包含误导性信息(比如:广告),且一些小众搜索引擎可能存在搜索延迟。

鉴于此,在多数企业级应用场景中,采用基于 Deep Research 思路的私有化部署可能是一个更佳的选择

接下来,我们将以 Deep Searcher 为例,展示如何结合开源项目和本地数据,实现一个升级版的 Deep Research 本地部署

3

如何针对私有数据,做 Deep Research

以下是基于多数开源 Deep Research 方案改进后,Zilliz 推出的 Deep Searcher 开源实现方案的架构设计如下所示

图片

从图中可以看出,Deep Searcher 通过集成向量数据库 Milvus,实现了对用户本地存储数据的快速、低延迟的大规模离线搜索。

Deep Searcher 的实现步骤如下

  • 第一步、问题解析:在接收到用户提问后,利用 LLM 对问题进行分析,生成多个子问题,并明确每个子问题对应的数据集。

  • 第二步、信息检索:根据 LLM 的分析结果,在向量数据库中检索相关信息。需要注意的是,向量数据库中的数据是离线存储的,因此在执行查询之前,需要先将数据导入向量数据库。这些数据可以是企业内部数据、在线下载的数据,或者是其他系统中定期导入的数据。

  • 第三步、内容判断:向量数据库检索到相似信息后,将用户的原始问题、子问题及其对应的搜索结果一同提交给大模型进行内容判断。

如果问题已经得到完整回答,则进入最终回答阶段。

如果达到预设的循环次数或 token 上限,同样进入最终回答阶段。

否则,大模型将生成新的问题,并继续下一轮循环。

方案亮点包括:

  • 私有数据利用:充分挖掘私有数据的价值,更好地与大模型结合。

  • 向量数据库优势:发挥向量数据库在处理大规模数据、低延迟搜索、多种索引策略、高可用性和资源弹性管理等方面的优势。

  • 数据管理:通过向量数据库高效管理私有数据,对不同类型的数据进行分库分表,支持多种应用,最大化数据价值,降低管理成本。

值得注意的是,为了更有效地保护私有数据,建议使用离线 LLM 大模型。如果使用 LLM API,即使仅返回部分检索数据,仍然存在数据泄露的风险

4

Deep Searcher 落地效果

遵循上述思路,Deep Research 的本地部署开源版本——Deep Searcher。

当前项目功能包括

  • 第一、LLM 支持:支持 OpenAI o3、Qwen3、DeepSeek、Grok 3、Claude 3.7 Sonnet、Llama 4、QwQ 等。

  • 第二、Embedding 模型支持:支持 Pymilvus 内置模型、OpenAI Embedding、VoyageAI Embedding。

  • 第三、数据 Loader 支持:支持离线文档(比如:PDF、Markdown、TXT)、在线文档(可通过 FireCrawl、JinaReader、Crawl4AI 获取)。

  • 第四、向量数据库支持:支持 Milvus、Zilliz Cloud 等。

‍最终效果预览如下

PS1:

为了帮助同学们彻底掌握 MCP 开发 AI 应用以及 AI 大模型新架构体系设计的新范式,我会开场直播和同学们深度剖析,请同学们点击以下预约按钮免费预约。

PS2:

总之,随着 DeepSeek 的爆火,2025年必定是 AI 大模型应用的爆发之年,其中最重要的应用形态就是 AI Agent 智能体,为了帮助大家快速掌握 AI Agent 智能体技术,我和团队落地大模型项目3年,帮助60多家企业落地近100个项目,根据我们企业级实战的项目经验,打造基于 DeepSeek 的 AI Agent 项目实战直播训练营,截至今天已经报名2万名学员,如此火爆!原价199元DeepSeek 爆火,为了回馈粉丝的支持,价格直接降到 19元,再开放今天一天的报名权限,仅限99名,抢完立刻恢复到199元。

5

AI Agent 智能体为啥如此重要?

第一、这是大势所趋随着 DeepSeek 春节期间的爆火,我们正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被 AI Agent 智能体重写一遍;

第二、现在处于红利期,先入场的同学至少会享受4~5年的红利,拿高薪,并且会掌握技术的主动权和职业选择权。

第三、企业需求旺盛,越来越多的企业已经在 AI Agent 智能体领域进行落地,这为我们提供了丰富的岗位机会和广阔的发展空间。

第四、大厂都在战略布局的方向,不管是国外的微软、谷歌,还是国内的百度等大厂都在战略布局,随着春节期间 DeepSeek 火出圈,2025年必定是 AI Agent 智能体商业化的一年。

我和团队最近两年一直在研究大模型应用技术,我想说:大模型的价值太大了,AI Agent 智能体的潜力太大了!“未来所有应用都会被 AI Agent 智能体重写一遍”!这句话也是今年听到最多的一句话。我和团队这两年,尤其是最近3年已经帮助60多家企业落地了近100个 AI Agent 智能体的项目。我自己贴身感受:越来越多的企业的确都开始落地 AI Agent 智能体项目了。

因此 AI Agent 智能体足够重要,但也足够复杂,我这两年实践结论是,想开发出一个能够可靠稳定的 AI Agent 智能体应用实在太难了,大模型技术本身的复杂度,大模型推理的不确定性,响应速度性能问题等等,这些困难直接导致很多人对其望而却步,或是遇到问题无从下手。一般技术同学想要自己掌握 AI Agent 智能体着实很不容易!

为此我特意打造了一个为期3天的基于 DeepSeek 的 AI Agent 智能体企业实战训练营:这个训练营是我和团队落地大模型项目3年,根据我们企业级实战的项目经验,打造了基于 DeepSeek 的3天 AI Agent 项目实战直播训练营。

课程原价199元DeepSeek 爆火,现在仅花19元就能拿下!文末再赠送5个报名福利!抢完立刻恢复199元!

6

3天直播训练营,你能收获什么?

3天的直播课,带你快速掌握基于 DeepSeek 的AI Agent 智能体核心技术和企业级项目实践经验。

模块一:AI Agent 智能体技术原理篇

全面拆解 AI Agent 智能体技术原理,深度掌握基于 DeepSeek 的 AI Agent 智能体三大能力及其运行机制。

模块二:AI Agent 智能体应用开发实战篇

深度讲解基于 DeepSeek 的 AI Agent 智能体技术选型及开发实践,学会开发 AI Agent 智能体核心技术能力。

模块三:AI Agent 智能体企业级案例实战篇

基于 DeepSeek,从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI Agent 智能体项目全流程重点难点问题解决。

3天时间,你能学会什么?

在真实项目实践中,你会获得4项硬核能力:

第一、全面了解 DeepSeek 大模型AI Agent 智能体的原理、架构和实现方法,掌握核心技术精髓。

第二、熟练使用 Dify/Coze 平台、DeepSeek、LangChain、AutoGen 等开发框架,为企业级技术实践打下坚实基础。

第三、通过企业级项目实战演练,能够独立完成基于 DeepSeek 的 AI Agent 智能体的设计开发和维护,学会解决企业级实际问题的能力。

第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升核心技术竞争力。

限时优惠:

原价199元,DeepSeek 爆火,现在报名只需19元文末再赠送5个报名福利!这是一个难得的机会,让我们一起踏上 AI Agent 智能技术之旅,开启技术新纪元!

7

今天报名再送5个配套福利

配套福利一:清华大学:DeepSeek 从入门到精通(2025)104 张页面,资料比较全,包括:DeeSeek 核心技术、DeepSeek 是什么?能做什么?如何使用 DeepSeek 等等

配套福利二:AI Agent 智能体训练营配套学习资料,包括:PPT 课件、实战代码、企业级智能体案例和补充学习资料。

配套福利三:AI Agent 智能体训练营学习笔记包含3天直播的所有精华

配套福利四AI Agent 智能体大厂面试真题100道!覆盖百度、阿里、腾讯、字节、美团、滴滴等大厂的100道真题,不论是跳槽还是升职加薪,参考意义都重大!

配套福利五2024年中国 AI Agent 智能体行业研究报告!AI Agent 智能体是新的应用形态,大模型时代的“APP”,技术范式也发生了很大的变化, 此份研究报告探索新一代人机交互及协作范式,覆盖技术、产品、商业、企业落地应用等方面,非常值得一读!

原价199元,DeepSeek 爆火,现在19元就能拿下!

8

添加助教直播学习

购买后,一定要添加助理才能进行直播学习👇

参考来源:

https://mp.weixin.qq.com/s/QoR9YOpdHqhA111PXLADvw

⬇戳”阅读原文“,立即报名!

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值