大家好,我是玄姐。
▼最近直播超级多,预约保你有收获
最近,AI Agent 和外部工具之间的互动变得越来越流行。从 OpenAI 最先推出的 Function Calling 功能,到各种插件和框架,大家都在努力让 AI 模型能更有效地调用外部的功能。不过,目前这些集成方式还是比较分散,开发者需要为每个服务手动设置接口、处理认证和逻辑,而且不同平台之间还互不兼容,确实挺麻烦的。

就在这种情况下,Anthropic 在2024年底推出了一个叫做模型上下文协议(Model Context Protocol,简称 MCP)的新东西。这个协议的野心不小,它想做的事情就像编程语言里的 LSP(Language Server Protocol)一样,为 AI 和工具之间的互动设定一个标准,让 AI Agent 能动态地发现、选择和组织工具,甚至还支持人在操作过程中插手。

自从 MCP 推出以来,它的发展速度非常快,社区里已经出现了好几千个 MCP 服务器,能连接到 GitHub、Slack 甚至 Blender 这样的 3D 设计工具。像 Cursor、Claude Desktop 这样的应用也开始支持 MCP了,只要装上新的服务器,就能扩展它们的能力。
—1—
MCP 架构设计剖析
1、MCP 架构设计剖析
MCP 架构设计分为核心组件、传输层和通信、MCP 服务器生命周期等构成,下面详细剖析之。
1.1、核心组件
MCP 架构由三个核心组件组成:MCP 主机(MCP Host)、MCP 客户端(MCP Client)和 MCP 服务器(MCP Server)。这些组件协同工作,以促进 AI 应用、外部工具和数据源之间的无缝通信,确保操作的安全性和正确管理。如图 2 所示,在典型工作流程中,用户向 MCP 客户端发送提示词,客户端分析意图,通过 MCP 服务器选择适当的工具,并调用外部 API 来检索和处理所需的信息,然后通知用户结果。

1.1.1、MCP 主机
MCP 主机是一个 AI 应用,它在运行 MCP 客户端的同时,为执行基于 AI 的任务提供环境。它集成交互工具和数据,以实现与外部服务的顺畅通信。比如: Claude Desktop 用于 AI 辅助内容创建,Cursor 是一

最低0.47元/天 解锁文章
1398

被折叠的 条评论
为什么被折叠?



