zkPoT:基于机器学习模型训练的ZKP

SanjamGarg等人的最新论文提出了一种zkPoT协议,它在训练大型数据集时内存效率高,分三个阶段进行:数据独立阶段(1小时)、验证阶段(秒级)和依赖模型的线上阶段(分钟级)。Rust实现可在GitHub上获取。
摘要由CSDN通过智能技术生成

1. 引言

Sanjam Garg等人2023年论文 Experimenting with Zero-Knowledge Proofs of Training 中,所设计的zkPoT(zero-knowledge proof of training)协议:

  • 为streaming-friendly的。
  • 所需RAM与训练电路size不呈比例。
  • 结合了MPC-in-the-head + zk-SNARKs。
  • 总的proof size比训练用的数据集size少10%,分为3个阶段:【以 training a logistic regression model using mini-batch gradient descent on a 4 GB dataset of 262,144 records with 1024 features 为例】
    • 数据独立线下阶段。
    • 依赖数据,但不依赖模型阶段,本阶段:
      • Prover用时约1小时。
      • Verifier用时数秒钟。
    • 线上阶段:既依赖数据,也依赖模型。线上阶段:
      • Prover用时少于10分钟。
      • Verifier用时少于半分钟。
        在这里插入图片描述

开源代码实现见:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值