异步Merkle Tree

1. 引言

前序博客:

Anoushk Kharangate 2023年论文《Asynchronous Merkle Trees》,其对Merkle tree数据结构进行修改,使得可跨多线程异步计算。

开源代码实现见:

Merkle tree应用广泛,有各种变种,如:

  • Jellyfish Merkle Tree
  • Sparse Merkle Tree

但这些都存在一个共同的问题:

  • 当用Merkle Tree来处理大数据集时,计算该tree的开销,将大幅增加。此外,插入单个叶子节点,将需要重构整棵树。

在某些情况下,插入叶子节点时的计算时间,应尽可能短,且对于数据并行处理的场景,需要能异步计算。《Asynchronous Merkle Trees》论文中:

  • 提出了并行处理一组数据,批量异步所构建的Merkle Tree,在每次插入时,无需重新计算该tree。

2. Asynchronous Merkle Trees(AMT)

Asynchronous Merkle Trees(AMT)有如下关键属性:

  • 1)节点类型:包含3种特殊节点:
    • 1.1)Digest节点:仅简单用作另一batch node的placeholder。
    • 1.2)Layer Checkpoint(LC)节点
    • 1.3)Compound节点:
      • 2个LC节点组成一个Compound节点。
      • 一个LC节点和一个Compound节点,组成另一Compound节点。
  • 2)排序:每个特殊节点必须包含一个order bit,以表示是其父节点的左子节点,还是右子节点。
  • 3)Segregation隔离:每个节点必须有一个batch bit,以表示其属于哪个batch。

某Merkle Tree T T T,其遵循如下要求:

  • 1) T T T的高度为 h h h,其中 h = log ⁡ 2 ( n ) h=\log_2(n) h=log2(n) n n n为叶子节点数
  • 2) T T T必须最多有 M M M个节点,其中 M = ∑ n h n 2 M=\sum_{n}^{h}\frac{n}{2} M=nh2n
  • 3)叶子节点表示为 N i N_i Ni,其中 { i ∈ N ∣ 0 ≤ i ≤ 2 D } \{i\in N|0\leq i \leq 2^D\} {iN∣0i2D}

将以上Merkle Tree T T T,扩展为,创建AMT,其遵循如下要求:

  • 1)异步附加的叶子称为Batches B B B,batches的数量和其叶子必须提取已知。
  • 2)以大量Digest Nodes D i D_i Di来初始化该tree,Digest Nodes D i D_i Di用作其它batches节点的placeholder。

在这里插入图片描述
如上图所示,以3层Merkle tree为例,当附加红色batch叶子时,需重新计算 N 11 N_{11} N11 N 12 N_{12} N12,无法异步附加。
对应的AMT为4层:
在这里插入图片描述
在这里插入图片描述
对应每个节点必须包含如下数据:

  • 1)Batch:一个整数值,用于表示该节点属于哪个batch
    • 对于Compound节点,可将其设置为(与现有batch id不冲突的)某特殊整数值,来表示该节点不属于特定batch。
  • 2)Order:一个整数值,为0或1,以表示左节点或右节点。
  • 3)Data:实际的数据哈希值。

在这里插入图片描述

Merkle tree系列博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值