Cohort Analysis

Cohort Analysis,是时下互联网行业的新宠,在市场已不再为虚假繁荣的数据买账时,我们必须提供新的“有效数据”来说服市场。更常见的,这个分析方法会被用来分析:用户留存情况,以及用户粘性。所以,一定记住了,不是Coherent Analysis(粘性分析),而是Cohort Analysis——一撮人分析法。

虚假繁荣是什么?之前大家只关心流量、下载量、注册量,但就像花钱能买僵尸粉一样,刷出十多万粉丝却没有点赞的博主是孤单的,翻翻的下载量却没有真实用户的app是没钱赚的。所以投资人----当然这事管理层也关心,但因为信息不对称,所以投资人对真实情况的渴求程度更为迫切----需要知道在未来一段时间能带来真实效益的数据。
Cohort Analysis提供一种更细致的分析方法,他将整体数据按不同的属性划分,分成Cohort,有共性的一撮User,然后根据这些“Cohort”的历史表现,来评估改版或促销的实际效果,或预测未来能带来的效益。比如,我们可以按照渠道、性别、收入、购买力等来划分Cohort。
以上为理论,如前所述,实际应用中,Cohort Analysis多用来分析用户留存情况,以及用户粘性。

我们看到每个月的新增用户都在刷刷的涨,但这种涨势可能是因为“首单免费”吸引来的。如果这些用户用过首单就不再回来了,那这些用户对公司来看,其实是无用的。这时就需要知道“有用的”客户有多少。


新增用户量

留存率

1

2

3

4

5

6

1

1000

100%

50%

30%

20%

10%

5%

2

1200


100%

50%

25%

20%

10%

3

1300



100%

45%

30%

10%

4

1400




100%

45%

25%

5

1500





100%

55%

当数据积累到一定程度,我们就能推断出新增的用户在未来留存的平均状态,以此来评估这种促销活动是否costeffective,或者用来评估总体老客户的保有量。
另外还可以用来作质量评估,比如对比上图是一个渠道的数据,而另一个渠道,第一月新增的用户,在第二个月仍活跃的不到20%,那么这个渠道相对就很差了。或者如果产品改版后的留存率降低,那么可能用户体验更差需要回滚了。这种用途主要是对现有状况的评估。
除了评估,市场最需要的是未来,基于现状对未来的合理预测是很重要的应用。
举个例子:

新增用户期间

新增用户

之后所处期间

留存人数

人均消费金额

00年

1000

01年

400

300

02年

100

250

03年

50

400

04年

20

500

01年

2000

02年

1000

300

03年

500

200

04年

150

500

02年

3500

03年

2000

500

04年

1500

450

表格说明:00年新增用户1000人,这1000人中,到01年还有400人为活跃用户,并且平均每人消费过3次。


以此累计足够多的数据,分析出用户群体中有多少是老客户,这些老客户的消费频次有多少;历史数据中新用户的表现一般怎样,第一年老客户、第二年老客户的购买频次,或消费金额为多少,从而推断今后,如05年,可能的销售收入。即:00年新增用户中5年老客户的人数*人均消费+01年新增用户中4年老客户的人数*人均消费+……
为了增强数据推断的准确性,实际应用中会进一步细化,如将新增的用户按性别、来源、年龄等分类;根据想要预测的结果确定留存人群的表现,如人均消费金额、消费次数等。

All in all,今日新知为Cohort Analysis,宏观上说是人群行为分析的一种,应用中特指留存分析、粘性分析,常用于互联网中,如电商、交易平台等。用于进行对现状的评估,和对未来情况的合理预测。
最后的最后,良心推荐 http://www.cohortanalysis.com/。关于definition、example和tools

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值