人工智能 — 立体视觉、双目系统

本文详细介绍了立体视觉的概念、原理,以及单目和双目系统的区别,重点阐述了利用视差测量深度信息的方法,特别提到了双目系统中三角形相似定理的应用。主要应用领域包括机器人、自动驾驶等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、立体视觉

1、定义

立体视觉是一种计算机视觉技术,其目的是从两幅或两幅以上的图像中推理出图像中每个像素点的深度信息

2、应用领域

机器人、辅助驾驶/无人驾驶、无人机等等。

3、原理

立体视觉借鉴了人类双眼的“视差”原理,即左、右眼对于真实世界中某一物体的观测是存在差异的,我们的大脑正是利用了左、右眼的差异,使得我们能够辨识物体的远近。

二、单目系统和双目系统

1、单目系统

O 点为相机的光心,π 是摄像头的成像平面。

在这里插入图片描述

2、双目系统

在这里插入图片描述

在这里插入图片描述

  • 极平面: O1, O2, P 三个点确定的平面。
  • 极点: O1O2 连线与像平面 I1、I2 的交点 e1、e2。
  • 基线(baseline):O1O2。
  • 极线:极平面与两个像平面之间的交线 l1、l2。

在这里插入图片描述

根据三角形相似定理:
△ P p p ′ ∼ △ P O R O T B Z = p p ′ Z − f = B − ( X R − W 2 ) − ( W 2 − X T ) Z − f = B + X T − X R Z − f Z = B ∗ f X R − X T = B ∗ f D f 是摄像机焦距 D 也就是我们通常所说的视差( d i s p a r i t y ) \triangle Ppp' \sim \triangle PO_RO_T\\ \frac{B}{Z}=\frac{pp'}{Z-f}=\frac{B-(X_R-\frac{W}{2})-(\frac{W}{2}-X_T)}{Z-f}=\frac{B+X_T-X_R}{Z-f}\\ Z=\frac{B*f}{X_R-X_T}=\frac{B*f}{D}\\ f 是摄像机焦距\\ D 也就是我们通常所说的视差(disparity) Ppp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值