人工智能 — 相机模型和镜头畸变

一、相机模型

1、相机与图像

在这里插入图片描述

2、坐标系

针孔相机模型存在四个坐标系:世界坐标系摄像机坐标系图像物理坐标系图像像素坐标系

1、世界坐标系

是客观三维世界的绝对坐标系,也称客观坐标系。就是物体在真实世界中的坐标。世界坐标系是随着物体的大小和位置变化的,单位是长度单位

2、相机坐标系

以相机的光心为坐标系的原点,以平行于图像的 x 和 y 方向为 x 轴和 y 轴,z 轴和光轴平行,x,y,z 互相垂直,单位是长度单位

3、图像物理坐标系

以主光轴和图像平面交点为坐标原点,x’ 和 y’ 方向如图所示,单位是长度单位

4、图像像素坐标系

以图像的顶点为坐标原点,u 和 v 方向平行于 x’ 和 y’ 方向,单位是以像素计。

在这里插入图片描述

假设:世界坐标系的坐标为 Pw(Xw,Yw,Zw)

对应的摄像机坐标系坐标为 Po(x,y,z)

对应的图像物理坐标系的坐标为 P’(x’,y’)

对应的图像像素坐标系的坐标为 p(u,v)

3、相机成像

在这里插入图片描述

4、世界坐标系到摄像机坐标系

这两个坐标系之间除了旋转矩阵 R,还存在平移矩阵 t。其关系可表示为:

[ X c Y c Z c 1 ] = [ R t 0 T 1 ] \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix}= \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} XcYcZc1 =[R0Tt1]

[ X Y Z 1 ] = L w [ X Y Z 1 ] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}=L_w \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} XYZ1 =Lw XYZ1

5、欧氏变换

两部分组成:旋转和平移。
a ′ = R a + t a' = Ra+t a=Ra+t

在这里插入图片描述

6、齐次坐标

多次连续的旋转和平移的情况下,假设我们将向量 a 进行了两次欧氏变换,旋转和平移分别为 R1, t1 和 R2,t2。

分别得到:
b = R 1 ∗ a + t 1 , c = R 2 ∗ b + t 2 ⇒ c = R 2 ∗ ( R 1 ∗ a + t 1 ) + t 2 b = R_1*a + t_1,c = R2*b + t2 \Rightarrow c = R2*(R1*a + t1) + t2 b=R1a+t1,c=R2b+t2c=R2(R1a+t1)+t2

[ a ′ 1 ] = [ R t 0 1 ] [ a 1 ] = T [ a 1 ] \begin{bmatrix} a' \\ 1 \end{bmatrix}= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a\\ 1 \end{bmatrix}=T \begin{bmatrix} a\\ 1 \end{bmatrix} [a1]=[R0t1][a1]=T[a1]

b ~ = T 1 a ~ , c ~ = T 2 b ~ ⇒ c ~ = T 2 T 1 a ~ \tilde{b} = T_1 \tilde{a},\tilde{c} = T_2 \tilde{b} \Rightarrow \tilde{c} = T_2T_1 \tilde{a} b~=T1a~,c~=T2b~c~=T2T1a~

7、摄像机坐标系到图像物理坐标系

在这里插入图片描述

相似三角形:
{ X ′ = f X c Z c Y ′ = f Y c Z c \begin{cases} X' = f \frac{X_c}{Z_c} \\ Y' = f \frac{Y_c}{Z_c} \end{cases} { X=fZcXcY=fZcYc
矩阵形式为:
Z c ∗ [ x y 1 ] = [ f 0 0 0 f 0 0 0 1 ] ∗ [ X c Y c Z c ] Z_c* \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}= \begin{bmatrix} f&0&0\\ 0&f&0\\ 0&0&1 \end{bmatrix}* \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} Zc xy1 = f000f0001 XcYcZc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值