目录
一、相机模型
1、相机与图像
2、坐标系
针孔相机模型存在四个坐标系:世界坐标系、摄像机坐标系、图像物理坐标系和图像像素坐标系。
1、世界坐标系
是客观三维世界的绝对坐标系,也称客观坐标系。就是物体在真实世界中的坐标。世界坐标系是随着物体的大小和位置变化的,单位是长度单位。
2、相机坐标系
以相机的光心为坐标系的原点,以平行于图像的 x 和 y 方向为 x 轴和 y 轴,z 轴和光轴平行,x,y,z 互相垂直,单位是长度单位。
3、图像物理坐标系
以主光轴和图像平面交点为坐标原点,x’ 和 y’ 方向如图所示,单位是长度单位。
4、图像像素坐标系
以图像的顶点为坐标原点,u 和 v 方向平行于 x’ 和 y’ 方向,单位是以像素计。
假设:世界坐标系的坐标为 Pw(Xw,Yw,Zw)
对应的摄像机坐标系坐标为 Po(x,y,z)
对应的图像物理坐标系的坐标为 P’(x’,y’)
对应的图像像素坐标系的坐标为 p(u,v)
3、相机成像
4、世界坐标系到摄像机坐标系
这两个坐标系之间除了旋转矩阵 R,还存在平移矩阵 t。其关系可表示为:
[ X c Y c Z c 1 ] = [ R t 0 T 1 ] \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix}= \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} XcYcZc1 =[R0Tt1]
[ X Y Z 1 ] = L w [ X Y Z 1 ] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}=L_w \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} XYZ1 =Lw XYZ1
5、欧氏变换
两部分组成:旋转和平移。
a ′ = R a + t a' = Ra+t a′=Ra+t
6、齐次坐标
多次连续的旋转和平移的情况下,假设我们将向量 a 进行了两次欧氏变换,旋转和平移分别为 R1, t1 和 R2,t2。
分别得到:
b = R 1 ∗ a + t 1 , c = R 2 ∗ b + t 2 ⇒ c = R 2 ∗ ( R 1 ∗ a + t 1 ) + t 2 b = R_1*a + t_1,c = R2*b + t2 \Rightarrow c = R2*(R1*a + t1) + t2 b=R1∗a+t1,c=R2∗b+t2⇒c=R2∗(R1∗a+t1)+t2
[ a ′ 1 ] = [ R t 0 1 ] [ a 1 ] = T [ a 1 ] \begin{bmatrix} a' \\ 1 \end{bmatrix}= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a\\ 1 \end{bmatrix}=T \begin{bmatrix} a\\ 1 \end{bmatrix} [a′1]=[R0t1][a1]=T[a1]
b ~ = T 1 a ~ , c ~ = T 2 b ~ ⇒ c ~ = T 2 T 1 a ~ \tilde{b} = T_1 \tilde{a},\tilde{c} = T_2 \tilde{b} \Rightarrow \tilde{c} = T_2T_1 \tilde{a} b~=T1a~,c~=T2b~⇒c~=T2T1a~
7、摄像机坐标系到图像物理坐标系
相似三角形:
{ X ′ = f X c Z c Y ′ = f Y c Z c \begin{cases} X' = f \frac{X_c}{Z_c} \\ Y' = f \frac{Y_c}{Z_c} \end{cases} {
X′=fZcXcY′=fZcYc
矩阵形式为:
Z c ∗ [ x y 1 ] = [ f 0 0 0 f 0 0 0 1 ] ∗ [ X c Y c Z c ] Z_c* \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}= \begin{bmatrix} f&0&0\\ 0&f&0\\ 0&0&1 \end{bmatrix}* \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} Zc∗
xy1
=
f000f0001
∗
XcYcZc