数学工具--高等代数

高等代数

矩阵与线性变换

要理解线性变化,首先要给出线性空间的定义:

线性空间)设 K K K是一个数域, V V V是一个集合,在 V V V上定义了一个加法"+",使得对 V V V中任意两个元素 α , β \alpha, \beta α,β,总存在 V V V中唯一的元素 γ \gamma γ满足 γ = α + β \gamma = \alpha + \beta γ=α+β。在数域 K K K V V V间定义数乘运算,使得对 K K K中任一数k及 V V V中任一元素 α \alpha α,总存在 V V V中唯一的元素 δ \delta δ满足: δ = k α \delta = k\alpha δ=kα。若上述加法及数乘满足:
(1) α + β = β + α \alpha+\beta = \beta + \alpha α+β=β+α
(2) ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma = \alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
(3) V V V中存在元素0,使得 ∀ α ∈ V \forall \alpha \in V αV α + 0 = α \alpha + 0 = \alpha α+0=α
(4) ∀ α ∈ V \forall \alpha \in V αV,存在 β \beta β,使得 α + β = 0 \alpha + \beta = 0 α+β=0
(5) 1 ⋅ α = α 1\cdot \alpha = \alpha 1α=α
(6) k ( α + β ) = k α + k β , k ∈ K k(\alpha+\beta) = k\alpha+k\beta , k \in K k(α+β)=kα+kβkK
(7) ( k + l ) α = k α + l α , k , l ∈ K (k+l)\alpha = k\alpha + l\alpha, k,l \in K (k+l)α=kα+lαk,lK
(8) k ( l α ) = ( k l ) α k(l\alpha) = (kl)\alpha k(lα)=(kl)α
满足上述条件的 V V V称为数域 K K K上的线性空间

线性变换)线性变换T是线性空间 V V V到自身的映射,并且满足对 V V V中任意 α , β \alpha, \beta α,β和数域 K K K中任意k,有:
T ( α + β ) = T ( α ) + T ( β ) , T ( k α ) = k T ( α ) T(\alpha+\beta) = T(\alpha)+T(\beta),T(k\alpha) = kT(\alpha) T(α+β)=T(α)+T(β)T(kα)=kT(α)


特征值分解

特征值分解

对于 n × n n\times n n×n的方阵 A A A,如果存在 λ , v ≠ 0 \lambda ,v \neq 0 λ,v=0使得满足:
A v = λ v Av = \lambda v Av=λv
那么称 λ \lambda λ A A A的一个特征值, v v v是其对应的特征向量。

假设A有n个线性无关的特征向量 { v 1 , ⋯   , v n } \{v_1,\cdots,v_n\} {v1,,vn},对应的特征值为 { λ 1 , ⋯   , λ n } \{\lambda_1,\cdots,\lambda_n\} {λ1,,λn},那么A的特征分解为:
A = V d i a g ( λ ) V − 1 A = Vdiag(\lambda)V^{-1} A=Vdiag(λ)V1
其中 V = [ v 1 , ⋯   , v n ] V = [v_1,\cdots,v_n] V=[v1,,vn]是由特征向量拼接而成的矩阵。

每个实对称矩阵都可以分解成实特征向量和实特征值:
A = Q Λ Q T A = Q \Lambda Q^{T} A=QΛQT
一般我们会把 Q Q Q的这n个特征向量标准化,即满足 ∣ ∣ q i ∣ ∣ = 1 ||q_i|| = 1 qi=1,那么此时 Q Q Q的n个特征向量为标准正交基,那么 Q Q Q就是正交阵。这里我们也可以将A看作沿各个 q i q_i qi方向延申 λ i \lambda_i λi倍的空间

虽然任意实对称矩阵都有特征分解,但是特征分解可能不唯一。如果两个或多个特征向量有相同特征值,那么由这些特征向量产生的子空间中,任意一组正交的向量都是对应这些特征值的特征向量。


SVD分解

上述特征值分解只适用于方阵,对于行和列不同的矩阵,我们也可以做类似的分解,叫作SVD分解。假设 A A A是一个 m × n m\times n m×n的矩阵,那么定义它的SVD分解为:
A = U Σ V T A = U \Sigma V^T A=UΣVT
在这里插入图片描述

其中 U U U是一个 m × m m\times m m×m的矩阵; Σ \Sigma Σ m × n m \times n m×n的矩阵,且除了主对角线上以外元素全为零,而主对角线上的元素就称为奇异值; V V V是一个 n × n n\times n n×n的矩阵。 U U U V V V都是酉矩阵,即满足 U T U = I , V T V = I U^T U = I, V^T V=I UTU=I,VTV=I

那么
A T A = V Σ T U T U Σ V T = V Σ T Σ V T A^T A = V \Sigma^T U^T U \Sigma V^T = V\Sigma^T \Sigma V^T ATA=VΣTUTUΣVT=VΣTΣVT
A A T = U Σ V T V Σ T U T = U Σ Σ T U T AA^T = U \Sigma V^T V \Sigma^T U^T = U \Sigma \Sigma^T U^T AAT=UΣVTVΣTUT=UΣΣTUT

Σ T Σ \Sigma^T \Sigma ΣTΣ Σ Σ T \Sigma \Sigma^T ΣΣT从矩阵的角度是不相同的,维数分别为 n × n n \times n n×n m × m m \times m m×m,但是它们的主对角线奇异值是相等的。

因此U是 A A T AA^T AAT的m个特征向量张成的矩阵,V是 A T A A^T A ATA的n个特征向量张成的矩阵,奇异值 σ \sigma σ A T A A^T A ATA的特征值的平方根

奇异值的减少特别快,往往前10%甚至前1%的奇异值就占了全部奇异值之和的99%以上的比例。那么我们也可以用最大的k个奇异值(k往往比n小很多)和对应的奇异向量来近似描述矩阵
在这里插入图片描述


Moore-Penrose伪逆


Reference:

  1. 奇异值分解(SVD)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值