【强化学习的数学原理】课程笔记--6(Actor-Critic方法)

系列笔记:
【强化学习的数学原理】课程笔记–1(基本概念,贝尔曼公式)
【强化学习的数学原理】课程笔记–2(贝尔曼最优公式,值迭代与策略迭代)
【强化学习的数学原理】课程笔记–3(蒙特卡洛方法)
【强化学习的数学原理】课程笔记–4(随机近似与随机梯度下降,时序差分方法)
【强化学习的数学原理】课程笔记–5(值函数近似,策略梯度方法)

Actor-Critic 方法

Actor-Critic 属于策略梯度(PG)方法,实际上是将 值函数近似 和 Policy gradient 方法进行了结合。具体来说,上一节 介绍的 Policy gradient 迭代式是:
θ t + 1 = θ t + α ∇ θ J ( θ t ) = θ t + α E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) ] = 随机梯度 θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) q t ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha \nabla_{\theta} J(\theta_t)\\ &= \theta_t + \alpha E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) q_{\pi}(S,A)]\\ &\overset{随机梯度}{=} \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t,\theta_t) q_t(s_t,a_t) \end{aligned} θt+1=θt+αθJ(θt)=θt+αESη,Aπ[θlnπ(AS,θt)qπ(S,A)]=随机梯度θt+αθlnπ(atst,θt)qt(st,at)

这里面求解 π \pi π 就是 policy-based (Actor) ,然后求解 π \pi π 需要知道 action value q t ( s t , a t ) q_t(s_t,a_t) qt(st,at),这一步就是 value-based (Critic) 。在之前的章节中,介绍了两种计算 action value q t ( s t , a t ) q_t(s_t,a_t) qt(st,at) 的方法:

  1. 蒙特卡洛方法:生成一个完整的 episode,使用 episode 中所有从 ( s t , a t ) (s_t, a_t) (st,at) 出发得到的 action value 的均值来估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at),即为 上一节 介绍的 REINFORCE 算法
  2. 时序差分方法:每走一步生成一个样本,就可以更新对应的 action value,走足够多步,也可也逐渐估计到比较准确的 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at),即为本节的 Actor-Critic 算法

QAC 算法

QAC 算法是一种比较简单的 Actor-Critic 方法,它在 update action value 时用的是时序差分方法中的 Sarsa 算法:

其中 value update 的公式:
w t + 1 = w t + α t [ r t + 1 + γ q ( s t + 1 , a t + 1 , w t ) − q ( s t , a t , w t ) ] ∇ w q ( s t , a t , w t ) w_{t+1} = w_t + \alpha_t [r_{t+1} + \gamma q(s_{t+1},a_{t+1},w_t) - q(s_t,a_t,w_t)] \nabla_w q(s_t,a_t,w_t) wt+1=wt+αt[rt+1+γq(st+1,at+1,wt)q(st,at,wt)]wq(st,at,wt)
是 Sarsa 的值函数形式,详细可见 【强化学习的数学原理】课程笔记–5(值函数近似,策略梯度方法)


Advantage Actor-Critic 算法

Baseline invariance

这里先介绍一下 Baseline invariance,旨在引入一个 b ( s ) b(s) b(s),使得加入这个偏置之后,不影响 ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) \nabla_{\theta} \ln \pi(A|S,\theta_t) q_{\pi}(S,A) θlnπ(AS,θt)qπ(S,A) 的期望,且会减小其方差。这里的含义是:在 Policy gradient 中,
θ t + 1 = θ t + α ∇ θ J ( θ t ) = θ t + α E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) ] = 随机梯度 θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) q t ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha \nabla_{\theta} J(\theta_t)\\ &= \theta_t + \alpha E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) q_{\pi}(S,A)]\\ &\overset{随机梯度}{=} \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t,\theta_t) q_t(s_t,a_t) \end{aligned} θt+1=θt+αθJ(θt)=θt+αESη,Aπ[θlnπ(AS,θt)qπ(S,A)]=随机梯度θt+αθlnπ(atst,θt)qt(st,at)
我们用通过多次的单个样本迭代来拟合随机变量的期望,但如果 ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) \nabla_{\theta} \ln \pi(A|S,\theta_t) q_{\pi}(S,A) θlnπ(AS,θt)qπ(S,A) 的方差本身是比较大的(由于真实分布未知,不排除这种可能),那么在样本量不足够多时,对期望的估计有更大的可能是不准的。eg:见下图,当从方差大的分布中采样时,其离我们希望拟合的期望值 0 往往距离较远;而从小方差分布中采样,则基本都离期望值 0 很近了。

1.不影响期望

要证明
E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) ] = E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) ( q π ( S , A ) − b ( S ) ) ] E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) q_{\pi}(S,A)] = E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) (q_{\pi}(S,A) - b(S))] ESη,Aπ[θlnπ(AS,θt)qπ(S,A)]=ESη,Aπ[θlnπ(AS,θt)(qπ(S,A)b(S))]
只需证:
E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) b ( S ) ] = 0 E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) b(S)] = 0 ESη,Aπ[θlnπ(AS,θt)b(S)]=0
这个过程比较trivial:
E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) b ( S ) ] = ∑ s η ( s ) ∑ a π ( a ∣ s , θ t ) ∇ θ ln ⁡ π ( A ∣ S , θ t ) b ( s ) = ∑ s η ( s ) ∑ a ∇ θ π ( A ∣ S , θ t ) b ( s ) ( 由于 ∇ θ ln ⁡ π ( A ∣ S , θ t ) = ∇ θ π ( A ∣ S , θ t ) π ( a ∣ s , θ t ) ) = ∑ s η ( s ) b ( s ) ∑ a ∇ θ π ( A ∣ S , θ t ) = ∑ s η ( s ) b ( s ) ∇ θ ∑ a π ( A ∣ S , θ t ) = ∑ s η ( s ) b ( s ) ∇ θ 1 = 0 \begin{aligned} E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) b(S)] &= \sum_s \eta(s) \sum_a \pi(a|s,\theta_t) \nabla_{\theta} \ln \pi(A|S,\theta_t) b(s)\\ &= \sum_s \eta(s) \sum_a \nabla_{\theta}\pi(A|S,\theta_t) b(s) \quad (由于 \nabla_{\theta} \ln \pi(A|S,\theta_t) = \frac{\nabla_{\theta}\pi(A|S,\theta_t)}{\pi(a|s,\theta_t)})\\ &=\sum_s \eta(s) b(s) \sum_a \nabla_{\theta}\pi(A|S,\theta_t)\\ &= \sum_s \eta(s) b(s) \nabla_{\theta} \sum_a \pi(A|S,\theta_t)\\ &= \sum_s \eta(s) b(s) \nabla_{\theta} 1 = 0 \end{aligned} ESη,Aπ[θlnπ(AS,θt)b(S)]=sη(s)aπ(as,θt)θlnπ(AS,θt)b(s)=sη(s)aθπ(AS,θt)b(s)(由于θlnπ(AS,θt)=π(as,θt)θπ(AS,θt))=sη(s)b(s)aθπ(AS,θt)=sη(s)b(s)θaπ(AS,θt)=sη(s)b(s)θ1=0

1.减小方差

X ( S , A ) = ∇ θ ln ⁡ π ( A ∣ S , θ t ) ( q π ( S , A ) − b ( S ) ) X(S,A) = \nabla_{\theta} \ln \pi(A|S,\theta_t) (q_{\pi}(S,A) - b(S)) X(S,A)=θlnπ(AS,θt)(qπ(S,A)b(S))

tr [ var ( X ) ] = tr [ E [ ( X − E ( X ) ) 2 ] ] = tr [ E [ ( X − E ( X ) ) ( X − E ( X ) ) T ] ] = tr [ E [ X X T − E ( X ) X T − X E ( X ) T + E ( X ) E ( X ) T ] ] = E [ X T X − X T E ( X ) − E ( X ) T X + E ( X ) T E ( X ) ] ( 由于tr ( A B ) = tr ( B A ) ) = E [ X T X ] − E [ X ] T E ( X ) − E ( X ) T E ( X ) + E ( X ) T E ( X ) = E [ X T X ] − E [ X ] T E ( X ) \begin{aligned} \text{tr}[\text{var} (X)] &= \text{tr}[E[(X - E(X))^2]]\\ &= \text{tr}[E[ (X-E(X))(X-E(X))^T]]\\ &= \text{tr}[E[ XX^T - E(X)X^T - XE(X)^T + E(X)E(X)^T]]\\ &= E[X^TX - X^TE(X) - E(X)^T X + E(X)^TE(X) ] \quad (由于 \text{tr}(AB) = \text{tr}(BA))\\ &= E[X^TX] - E[X]^TE(X) - E(X)^TE(X) + E(X)^TE(X)\\ &= E[X^TX] - E[X]^TE(X) \end{aligned} tr[var(X)]=tr[E[(XE(X))2]]=tr[E[(XE(X))(XE(X))T]]=tr[E[XXTE(X)XTXE(X)T+E(X)E(X)T]]=E[XTXXTE(X)E(X)TX+E(X)TE(X)](由于tr(AB)=tr(BA))=E[XTX]E[X]TE(X)E(X)TE(X)+E(X)TE(X)=E[XTX]E[X]TE(X)

由于 E ( X ) E(X) E(X) b ( S ) b(S) b(S) 无关,因此要最小化 tr [ var ( X ) ] \text{tr}[\text{var} (X)] tr[var(X)],只需要考虑最小化 E [ X T X ] E[X^TX] E[XTX]
∇ b E [ X T X ] = ∇ b E [ ( ∇ θ ln ⁡ π ) T ( ∇ θ ln ⁡ π ) ( q π ( S , A ) − b ( S ) ) 2 ] = ∇ b E [ ∣ ∣ ∇ θ ln ⁡ π ∣ ∣ 2 ( q π ( S , A ) − b ( S ) ) 2 ] = ∇ b ∑ s η ( s ) E A ∼ π [ ∣ ∣ ∇ θ ln ⁡ π ∣ ∣ 2 ( q π ( S , A ) − b ( S ) ) 2 ] = − 2 ∑ s η ( s ) E A ∼ π [ ∣ ∣ ∇ θ ln ⁡ π ∣ ∣ 2 ( q π ( S , A ) − b ( S ) ) ] = 0 \begin{aligned} \nabla_{b} E[X^TX] &= \nabla_{b}E[(\nabla_{\theta} \ln \pi)^T (\nabla_{\theta} \ln \pi) (q_{\pi}(S,A) - b(S))^2]\\ &= \nabla_{b}E[||\nabla_{\theta} \ln \pi||^2 (q_{\pi}(S,A) - b(S))^2]\\ &=\nabla_{b}\sum_s \eta(s) E_{A \sim \pi} [||\nabla_{\theta} \ln \pi||^2 (q_{\pi}(S,A) - b(S))^2]\\ &= -2 \sum_s \eta(s) E_{A \sim \pi} [||\nabla_{\theta} \ln \pi||^2 (q_{\pi}(S,A) - b(S))]\\ &= 0 \end{aligned} bE[XTX]=bE[(θlnπ)T(θlnπ)(qπ(S,A)b(S))2]=bE[∣∣θlnπ2(qπ(S,A)b(S))2]=bsη(s)EAπ[∣∣θlnπ2(qπ(S,A)b(S))2]=2sη(s)EAπ[∣∣θlnπ2(qπ(S,A)b(S))]=0

⇒ E A ∼ π [ ∣ ∣ ∇ θ ln ⁡ π ∣ ∣ 2 ( q π ( S , A ) − b ( S ) ) ] = 0 , ∀ s \Rightarrow \qquad E_{A \sim \pi} [||\nabla_{\theta} \ln \pi||^2 (q_{\pi}(S,A) - b(S))] = 0 , \quad \forall s EAπ[∣∣θlnπ2(qπ(S,A)b(S))]=0,s
因此
b ∗ ( s ) = E A ∼ π [ ∣ ∣ ∇ θ ln ⁡ π ∣ ∣ 2 q π ] E A ∼ π [ ∣ ∣ ∇ θ ln ⁡ π ∣ ∣ 2 ] , ∀ s b^*(s) = \frac{E_{A \sim \pi} [||\nabla_{\theta} \ln \pi||^2 q_{\pi}]}{E_{A \sim \pi} [||\nabla_{\theta} \ln \pi||^2 ]}, \quad \forall s b(s)=EAπ[∣∣θlnπ2]EAπ[∣∣θlnπ2qπ],s

不过上式比较复杂,实践中常常使用 b ∗ ( s ) = E A ∼ π [ q π ( s , A ) ] = v π ( s ) , ∀ s b^*(s) = E_{A \sim \pi} [q_{\pi}(s,A)] = v_{\pi}(s) , \quad \forall s b(s)=EAπ[qπ(s,A)]=vπ(s),s 也有还不错的效果。


Advantage Actor-Critic (A2C)算法就是将 b ( S ) b(S) b(S) 取为 b ∗ ( s ) = v π ( s ) b^*(s) = v_{\pi}(s) b(s)=vπ(s) 时的算法,因此:
θ t + 1 = θ t + α E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) ( q π ( S , A ) − v π ( S ) ) ] = . θ t + α E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) δ ( S , A ) ] = 随机梯度 θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) δ ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) (q_{\pi}(S,A) - v_{\pi}(S))]\\ &\overset{.}{=} \theta_t + \alpha E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) \delta(S,A)]\\ &\overset{随机梯度}{=} \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t,\theta_t) \delta(s_t,a_t) \end{aligned} θt+1=θt+αESη,Aπ[θlnπ(AS,θt)(qπ(S,A)vπ(S))]=.θt+αESη,Aπ[θlnπ(AS,θt)δ(S,A)]=随机梯度θt+αθlnπ(atst,θt)δ(st,at)

这里 δ ( S , A ) = q π ( S , A ) − v π ( S ) \delta(S,A) = q_{\pi}(S,A) - v_{\pi}(S) δ(S,A)=qπ(S,A)vπ(S) 称为 优势函数。这里的含义是,由于 v π ( S ) = E A ∼ π [ q π ( s , A ) ] v_{\pi}(S) =E_{A \sim \pi} [q_{\pi}(s,A)] vπ(S)=EAπ[qπ(s,A)],因此 δ ( S , A ) \delta(S,A) δ(S,A) 越大,表示当前 action 的 value 比平均值来的更大,即更有优势根据 δ ( s t , a t ) \delta(s_t,a_t) δ(st,at) 的值来判断 θ t + 1 \theta_{t+1} θt+1 的改进方向也确实比单纯只用 q π ( s t , a t ) q_{\pi}(s_t,a_t) qπ(st,at) 更为精准,因为 action value 的相对大小比绝对大小更有意义

这里由于 q π ( s t , a t ) = E [ R t + 1 + γ v π ( S t + 1 ) ∣ S t = s t , A t = a t ] q_{\pi}(s_t, a_t) = E [R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s_t, A_t = a_t] qπ(st,at)=E[Rt+1+γvπ(St+1)St=st,At=at]
因此求解 δ ( s t , a t ) = q π ( s t , a t ) − v π ( s t ) = E [ R t + 1 + γ v π ( S t + 1 ) − v π ( S t ) ∣ S t = s t , A t = a t ] \delta(s_t,a_t) = q_{\pi}(s_t,a_t) - v_{\pi}(s_t) = E [R_{t+1} + \gamma v_{\pi}(S_{t+1}) - v_{\pi}(S_t) | S_t = s_t, A_t = a_t] δ(st,at)=qπ(st,at)vπ(st)=E[Rt+1+γvπ(St+1)vπ(St)St=st,At=at]
转化求解 state value v π ( s t ) v_{\pi}(s_t) vπ(st),根据 【强化学习的数学原理】课程笔记–5(值函数近似,策略梯度方法),其值函数近似迭代为:
w t + 1 = w t + α t ( r t + 1 + γ v t ( s t + 1 ) − v ( s t , w k ) ) ∇ w v ( s t , w k ) = w t + α t δ t ∇ w v ( s t , w k ) w_{t+1} = w_t + \alpha_t ( r_{t+1} + \gamma v_t(s_{t+1}) - v(s_t,w_k))\nabla_w v(s_t,w_k) = w_t + \alpha_t \delta_t \nabla_w v(s_t,w_k) wt+1=wt+αt(rt+1+γvt(st+1)v(st,wk))wv(st,wk)=wt+αtδtwv(st,wk)


Off-policy Actor-Critic

不难发现之前学习的几个 Policy grandient 算法:REINFORCE, QAC 以及 A2C ,都是 on-policy 算法,因为其目标函数:
E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) ( q π ( S , A ) − b ( S ) ) ] E_{S \sim \eta , A \sim \pi}[\nabla_{\theta} \ln \pi(A|S,\theta_t) (q_{\pi}(S,A) - b(S))] ESη,Aπ[θlnπ(AS,θt)(qπ(S,A)b(S))]
在采样时,都要依赖策略 π \pi π (因为 A ∼ π A \sim \pi Aπ)。

在实际使用时,要想将这些 on-policy 算法转成 off-policy 的,需要用到一种技术叫 重要性采样(事实上,所有 on-policy 的强化学习算法都可以通过这个技术转成 off-policy 的,并且重要性采样这个技术也可以用于其他领域,当要估计的分布与数据采样的分布不同的情况)

重要性采样

重要性采样主要用于处理如下问题:

目标是估计 E X ∼ p 0 [ X ] E_{X \sim p_0}[X] EXp0[X]
但现在我们只有一批根据分布 p 1 p_1 p1 采到的样本 { x 1 , x 2 , . . . } \{x_1, x_2, ...\} {x1,x2,...},现在想用这些样本来估计 E X ∼ p 0 [ X ] E_{X \sim p_0}[X] EXp0[X]

由于
E X ∼ p 0 [ X ] = ∑ x p 0 ( x ) x = ∑ x p 1 ( x ) p 0 ( x ) p 1 ( x ) x = E X ∼ p 1 [ f ( X ) ] ,其中  f ( x ) = p 0 ( x ) p 1 ( x ) x E_{X \sim p_0}[X] = \sum_x p_0(x)x = \sum_x p_1(x) \frac{p_0(x)}{p_1(x)} x = E_{X \sim p_1}[f(X)],\text{其中 } f(x) = \frac{p_0(x)}{p_1(x)} x EXp0[X]=xp0(x)x=xp1(x)p1(x)p0(x)x=EXp1[f(X)]其中 f(x)=p1(x)p0(x)x

根据 大数定理 (见 【强化学习的数学原理】课程笔记–3(蒙特卡洛方法)), 1 n ∑ i = 1 n f ( x i ) = 1 n ∑ i = 1 n p 0 ( x i ) p 1 ( x i ) x i \frac{1}{n} \sum_{i=1}^n f(x_i) = \frac{1}{n} \sum_{i=1}^n \frac{p_0(x_i)}{p_1(x_i)} x_i n1i=1nf(xi)=n1i=1np1(xi)p0(xi)xi
E X ∼ p 1 [ f ( X ) ] E_{X \sim p_1}[f(X)] EXp1[f(X)] 的无偏估计。其中 p 0 ( x i ) p 1 ( x i ) \frac{p_0(x_i)}{p_1(x_i)} p1(xi)p0(xi) 也称 重要性权重。一个直观的理解是: p 0 ( x i ) > p 1 ( x i ) p_0(x_i) > p_1(x_i) p0(xi)>p1(xi) 时,说明 p 1 p_1 p1 分布中,采到样本 x i x_i xi 的概率要小一些,那么为了拟合 p 0 p_0 p0 分布的采样情况,当采到一个 x i x_i xi 时,要增加它的权重,才能更近似 p 0 p_0 p0 分布的采样效果。(实际使用中, p 0 p_0 p0 p 1 p_1 p1 分布是两个神经网络, p 1 p_1 p1 是一个已经训好的网络,而 p 0 p_0 p0 是我们要训的网络)


现在可以描述 Off-policy Actor-Critic 算法,【强化学习的数学原理】课程笔记–5(值函数近似,策略梯度方法) 给出了 Policy Gradient 方法的目标函数:
E [ v π ( S ) ] = ∑ s d ( s ) v π ( s ) E[v_{\pi}(S)] = \sum_{s} d(s)v_{\pi}(s) E[vπ(S)]=sd(s)vπ(s)
其中 d ( s ) d(s) d(s) 是平稳分布。这里我们记 β \beta β 为 behavior policy,则 Off-policy 算法的目标函数变成:
J ( θ ) = E S ∼ d β [ v π ( S ) ] = ∑ s d β ( s ) v π ( s ) J(\theta) = E_{S \sim d_{\beta}}[v_{\pi}(S)] = \sum_{s} d_{\beta}(s)v_{\pi}(s) J(θ)=ESdβ[vπ(S)]=sdβ(s)vπ(s)

其梯度为:

∇ θ J ( θ ) = E S ∼ ρ , A ∼ β [ π ( A ∣ S , θ ) β ( A ∣ S ) ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \nabla_{\theta} J(\theta) = E_{S \sim \rho, A \sim \beta}[\frac{\pi(A|S,\theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S,\theta) q_{\pi}(S,A)] θJ(θ)=ESρ,Aβ[β(AS)π(AS,θ)θlnπ(AS,θ)qπ(S,A)]
其中 ρ ( s ) = ∑ s ′ d β ( s ′ ) ∑ k = 0 ∞ γ k [ P π k ] s ′ s \rho(s) = \sum_s' d_{\beta}(s') \sum_{k=0}^{\infin} \gamma^k [P_{\pi}^k]_{s's} ρ(s)=sdβ(s)k=0γk[Pπk]ss 即所有从 s ′ s' s s s s 的 trajectory 的 discounted probability 之和。

Proof:在 【强化学习的数学原理】课程笔记–5(值函数近似,策略梯度方法) 中已经证明:
∇ θ v π ( s ) = ∑ s ′ ∑ k = 0 ∞ γ k [ P π k ] s s ′ ∑ a ∇ θ π ( a ∣ s ′ , θ ) q π ( s ′ , a ) \nabla_{\theta} v_{\pi}(s) = \sum_{s'} \sum_{k=0}^{\infin} \gamma^k [P_{\pi}^k]_{ss'} \sum_a \nabla_{\theta} \pi(a|s',\theta) q_{\pi}(s',a) θvπ(s)=sk=0γk[Pπk]ssaθπ(as,θ)qπ(s,a)
因此:
∇ θ J ( θ ) = ∇ θ ∑ s d β ( s ) v π ( s ) = ∑ s d β ( s ) ∇ θ v π ( s ) = ∑ s d β ( s ) ∑ s ′ ∑ k = 0 ∞ γ k [ P π k ] s s ′ ∑ a ∇ θ π ( a ∣ s ′ , θ ) q π ( s ′ , a ) = ∑ s ′ ( ∑ s d β ( s ) ∑ k = 0 ∞ γ k [ P π k ] s s ′ ) ∑ a ∇ θ π ( a ∣ s ′ , θ ) q π ( s ′ , a ) = ∑ s ′ ρ ( s ′ ) ∑ a ∇ θ π ( a ∣ s ′ , θ ) q π ( s ′ , a ) = E S ∼ ρ [ ∑ a ∇ θ π ( a ∣ S , θ ) q π ( S , a ) ] = E S ∼ ρ [ ∑ a β ( a ∣ S ) π ( a ∣ S , θ ) β ( a ∣ S ) ∇ θ π ( a ∣ S , θ ) π ( a ∣ S , θ ) q π ( S , a ) ] = E S ∼ ρ [ ∑ a β ( a ∣ S ) π ( a ∣ S , θ ) β ( a ∣ S ) ∇ θ ln ⁡ π ( a ∣ S , θ ) q π ( S , a ) ] = E S ∼ ρ , A ∼ β [ π ( A ∣ S , θ ) β ( A ∣ S ) ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \begin{aligned} \nabla_{\theta} J(\theta) &=\nabla_{\theta} \sum_{s} d_{\beta}(s)v_{\pi}(s) = \sum_{s} d_{\beta}(s) \nabla_{\theta} v_{\pi}(s)\\ &= \sum_{s} d_{\beta}(s) \sum_{s'} \sum_{k=0}^{\infin} \gamma^k [P_{\pi}^k]_{ss'} \sum_a \nabla_{\theta} \pi(a|s',\theta) q_{\pi}(s',a)\\ &= \sum_{s'} (\sum_{s} d_{\beta}(s) \sum_{k=0}^{\infin} \gamma^k [P_{\pi}^k]_{ss'}) \sum_a \nabla_{\theta} \pi(a|s',\theta) q_{\pi}(s',a)\\ &= \sum_{s'} \rho(s') \sum_a \nabla_{\theta} \pi(a|s',\theta) q_{\pi}(s',a)\\ &= E_{S \sim \rho}[\sum_a \nabla_{\theta} \pi(a|S,\theta) q_{\pi}(S,a)]\\ &= E_{S \sim \rho}[\sum_a \beta(a|S) \frac{ \pi(a|S,\theta)}{\beta(a|S)} \frac{\nabla_{\theta} \pi(a|S,\theta)}{\pi(a|S,\theta)} q_{\pi}(S,a)]\\ &= E_{S \sim \rho}[\sum_a \beta(a|S) \frac{ \pi(a|S,\theta)}{\beta(a|S)} \nabla_{\theta} \ln \pi(a|S,\theta) q_{\pi}(S,a)]\\ &= E_{S \sim \rho, A \sim \beta}[\frac{\pi(A|S,\theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S,\theta) q_{\pi}(S,A)] \end{aligned} θJ(θ)=θsdβ(s)vπ(s)=sdβ(s)θvπ(s)=sdβ(s)sk=0γk[Pπk]ssaθπ(as,θ)qπ(s,a)=s(sdβ(s)k=0γk[Pπk]ss)aθπ(as,θ)qπ(s,a)=sρ(s)aθπ(as,θ)qπ(s,a)=ESρ[aθπ(aS,θ)qπ(S,a)]=ESρ[aβ(aS)β(aS)π(aS,θ)π(aS,θ)θπ(aS,θ)qπ(S,a)]=ESρ[aβ(aS)β(aS)π(aS,θ)θlnπ(aS,θ)qπ(S,a)]=ESρ,Aβ[β(AS)π(AS,θ)θlnπ(AS,θ)qπ(S,A)]

综上,Off-policy Actor-Critic 算法的迭代式为(考虑 Baseline invariance):

θ t + 1 = θ t + α E S ∼ ρ , A ∼ β [ π ( A ∣ S , θ ) β ( A ∣ S ) ∇ θ ln ⁡ π ( A ∣ S , θ t ) ( q π ( S , A ) − v π ( S ) ) ] = . θ t + α E S ∼ ρ , A ∼ β [ π ( A ∣ S , θ ) β ( A ∣ S ) ∇ θ ln ⁡ π ( A ∣ S , θ t ) δ ( S , A ) ] = 随机梯度 θ t + α π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) δ ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha E_{S \sim \rho , A \sim \beta}[\frac{\pi(A|S,\theta)}{\beta(A|S)} \nabla_{\theta} \ln \pi(A|S,\theta_t) (q_{\pi}(S,A) - v_{\pi}(S))]\\ &\overset{.}{=} \theta_t + \alpha E_{S \sim \rho , A \sim \beta}[\frac{\pi(A|S,\theta)}{\beta(A|S)}\nabla_{\theta} \ln \pi(A|S,\theta_t) \delta(S,A)]\\ &\overset{随机梯度}{=} \theta_t + \alpha \frac{\pi(a_t|s_t,\theta_t) }{\beta(a_t|s_t)} \nabla_{\theta} \ln \pi(a_t|s_t,\theta_t) \delta(s_t,a_t) \end{aligned} θt+1=θt+αESρ,Aβ[β(AS)π(AS,θ)θlnπ(AS,θt)(qπ(S,A)vπ(S))]=.θt+αESρ,Aβ[β(AS)π(AS,θ)θlnπ(AS,θt)δ(S,A)]=随机梯度θt+αβ(atst)π(atst,θt)θlnπ(atst,θt)δ(st,at)

其算法为:


Deterministic Policy Gradient (DPG)

【强化学习的数学原理】课程笔记–5(值函数近似,策略梯度方法) 中推导了 statistical policy 的目标函数梯度的统一形式:

∇ θ J ( θ ) = ∑ s η ( s ) ∑ a ∇ θ π ( a ∣ s , θ ) q π ( s , a ) \nabla_{\theta} J(\theta) = \sum_s \eta(s) \sum_a \nabla_{\theta} \pi(a|s,\theta) q_{\pi}(s,a) θJ(θ)=sη(s)aθπ(as,θ)qπ(s,a)
上式的一个等价形式: ∇ θ J ( θ ) = E S ∼ η , A ∼ π ( S , θ ) [ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \nabla_{\theta} J(\theta) = E _{S \sim \eta, A \sim \pi(S,\theta)} [\nabla_{\theta} \ln \pi(A|S,\theta) q_{\pi}(S,A)] θJ(θ)=ESη,Aπ(S,θ)[θlnπ(AS,θ)qπ(S,A)]

类似的,Deterministic policy μ \mu μ 是贪婪策略,因此
μ ( a ∣ s ) = { 1 , a = arg max ⁡ a ∈ A q ( s , a ) 0 , a ≠ arg max ⁡ a ∈ A q ( s , a ) \mu(a|s) = \begin{cases} 1, \quad a = \argmax_{a \in A} q(s,a)\\ 0, \quad a \neq \argmax_{a \in A} q(s,a) \end{cases} μ(as)={1,a=argmaxaAq(s,a)0,a=argmaxaAq(s,a)

其对应的目标函数梯度的统一形式为:

∇ θ J ( θ ) = ∑ s η ( s ) ∇ θ μ ( s ) ∇ a q μ ( s , a = μ ( s ) ) = E S ∼ η [ ∇ θ μ ( s ) ∇ a q μ ( s , a = μ ( s ) ) ] \begin{aligned} \nabla_{\theta} J(\theta) &= \sum_s \eta(s) \nabla_{\theta} \mu(s) \nabla_{a}q_{\mu}(s,a=\mu(s))\\ &= E _{S \sim \eta} [\nabla_{\theta} \mu(s) \nabla_{a}q_{\mu}(s,a=\mu(s))] \end{aligned} θJ(θ)=sη(s)θμ(s)aqμ(s,a=μ(s))=ESη[θμ(s)aqμ(s,a=μ(s))]

具体证明见 强化学习的数学原理

综上,Deterministic Actor-Critic 算法的迭代式为(考虑 Baseline invariance):

θ t + 1 = θ t + α E S ∼ η [ ∇ θ μ ( s ) ∇ a q μ ( s , a = μ ( s ) ) ] = 随机梯度 θ t + α ∇ θ μ ( s t ) ∇ a q μ ( s t , a = μ ( s t ) ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha E _{S \sim \eta} [\nabla_{\theta} \mu(s) \nabla_{a}q_{\mu}(s,a=\mu(s))]\\ &\overset{随机梯度}{=} \theta_t + \alpha \nabla_{\theta} \mu(s_t) \nabla_{a}q_{\mu}(s_t,a=\mu(s_t)) \end{aligned} θt+1=θt+αESη[θμ(s)aqμ(s,a=μ(s))]=随机梯度θt+αθμ(st)aqμ(st,a=μ(st))

由于采样时无需依赖 policy μ \mu μ,因此 Deterministic Actor-Critic 很自然是 off-policy 的

这里利用了对 action value q ( s t , a t ) q(s_t,a_t) q(st,at) 的值函数估计:
w t + 1 = w t + α t [ r t + 1 + γ q ( s t + 1 , μ ( s t + 1 , θ t ) , w t ) − q ( s t , a t , w t ) ] ∇ w q ( s t , a t , w t ) w_{t+1} = w_t + \alpha_t [r_{t+1} + \gamma q(s_{t+1},\mu(s_{t+1},\theta_t),w_t) - q(s_t,a_t,w_t)] \nabla_w q(s_t,a_t,w_t) wt+1=wt+αt[rt+1+γq(st+1,μ(st+1,θt),wt)q(st,at,wt)]wq(st,at,wt)

注意这里的样本虽然是用到了 { s t , a t , r t + 1 , s t + 1 , a ^ t + 1 } \{s_t, a_t, r_{t+1}, s_{t+1}, \hat a_{t+1}\} {st,at,rt+1,st+1,a^t+1},但其中 a ^ t + 1 \hat a_{t+1} a^t+1 ,其实是由当前 target policy μ ( s t + 1 , θ t ) \mu(s_{t+1},\theta_t) μ(st+1,θt) 取得的,而不是采样来的。下一步的样本 ( s t + 1 , a t + 1 ) (s_{t+1}, a_{t+1}) (st+1,at+1) 才是再根据 behavior policy 采样得到的。


Reference:
1.强化学习的数学原理

  • 25
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值