Neural Networks for Applied Sciences and Engineering--Chapter 5

Chapter 5 Implementation of Neural Network Models for Extracting Reliable Patterns from Data
5.1 Introduction and Overview
Three topics of this chapter are generalization ability,minimizing model complexity and robustness of models.

5.2 Bias-Variance Tradeoff

5.3 Improving Generalization of Neural Networks

5.3.1 Illustration of Early Stopping

5.3.1.1 Effect of Initial Random Weights

5.3.1.2 Weights structure of the Trained Networks

5.3.1.3 Effect of Random Sampling


5.3.1.4 Effect of Model Complexity:Nember of Hidden Neurons

5.3.1.5 Summary of Early Stopping

5.3.2 Regularization
The previous two methods are benefit of improving generalization by keeping weights small.The advantage of regularization is that training takes less time,and once the optimum weights are reached,they do not continue to grow.

5.4 Reducing Structural Complexity of Networks by Pruning

5.4.1 Optimal Brain Damage
Correction:correlation reduces redundant.

5.4.1.1 Example of Network Pruning with Optimal Brain Damage

5.4.2 Network Pruning Based on Variance of Network Sensitivity
Essentially,we want to test the sensitivity of parameters where are zero or not.

5.4.2.1 Illustration of Application of Variance Nullity in Pruning Weights
If the weights link the neuron and the ahead layer are eliminated,we tend to eliminated the neuron,whereas we don't.

5.4.2.2 Pruning Hidden Neurons Based on Variance Nullity of Sensitivity
we can calculate the sensitivity of output to hidden layers' ouput,then use pruning method.
The pruning processes of all methods provide a method to prun more logical and fast.But it also need iteration and trail and error.It is not complete and certain,like deceison trees.

5.5 Robustness of a Network to Perturbation of Weights

5.5.1 Confidence Intervals for Weights

We generate a set of weights by useing optimal weights add a random noise.Then we calculate the mean and the standard deviation of the weights.Then calculating the Upper and the Lower in terms of the formula.


The noise affect the weights and the network.We want to have a network that is robust to response to the situations about different noise.And we want to select the optimal weights overcoming the effects of noise.A related methods with Bayesian statistics is introduced in Chapter 7.

5.6 Summary

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features x Explains neural networks in a multi-disciplinary context x Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting x Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA. Her neural networks research focuses on theoretical understanding and advancements as well as practical implementations.
混合图神经网络用于少样本学习。少样本学习是指在给定的样本数量非常有限的情况下,如何进行有效的学习和分类任务。混合图神经网络是一种结合了图神经网络和其他模型的方法,用于解决少样本学习问题。 首先,混合图神经网络将图神经网络与其他模型结合起来,以充分利用它们在不同任务上的优势。图神经网络可以有效地处理图结构数据,并捕捉节点之间的关系,而其他模型可能在处理其他类型的数据时更加优秀。通过将它们结合起来,混合图神经网络可以在少样本学习中更好地利用有限的数据。 其次,混合图神经网络可以通过在训练过程中使用一些预训练模型来提高学习效果。预训练模型是在大规模数据集上进行训练得到的模型,在特定任务上可能有较好的性能。通过将预训练模型与图神经网络结合,混合图神经网络可以在少样本学习中利用预训练模型的知识,以更好地适应有限的数据。 最后,混合图神经网络还可以通过设计适当的注意力机制来提高学习效果。注意力机制可以使网络更加关注重要的特征和关系,忽略无关的信息。在少样本学习中,选择性地关注有限的样本和特征对于提高学习的效果至关重要。混合图神经网络可以通过引入适当的注意力机制来实现这一点,以提取和利用关键信息。 综上所述,混合图神经网络是一种用于少样本学习的方法,它结合了图神经网络和其他模型的优势,并利用预训练模型和适当的注意力机制来提高学习效果。这种方法对于在有限数据条件下执行有效的学习和分类任务非常有帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值