应用数理统计基本概念(二)

(一)次序统计量与经验分布

1.次序统计量

假定 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn为取自总体 X X X的样本, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为该样本的任意一个实现。将样本实现 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn从小到大顺序进行排序,其排序结果记为 x ( 1 ) , x ( 2 ) , . . . , x ( n ) x_{(1)},x_{(2)},...,x_{(n)} x(1),x(2),...,x(n),令 X ( i ) X_{(i)} X(i)取值 x ( i ) ( i = 1 , 2 , . . . , n ) x_{(i)}(i=1,2,...,n) x(i)(i=1,2,...,n) X ( 1 ) , X ( 2 ) , . . . , X ( n ) X_{(1)},X_{(2)},...,X_{(n)} X(1),X(2),...,X(n)或其一部分被称之为次序统计量。例如: X ( 1 ) X_{(1)} X(1)被称之为最小次序统计量, X ( k ) X_{(k)} X(k)被称之为第 k k k次序统计量, X ( n ) X_{(n)} X(n)被称之为最大次序统计量。

2.经验分布函数

假设 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为来自总体 X X X的样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn的一个实现, x ( 1 ) , x ( 2 ) , . . . , x ( n ) x_{(1)},x_{(2)},...,x_{(n)} x(1),x(2),...,x(n)为次序统计量 X ( 1 ) , X ( 2 ) , . . . , X ( n ) X_{(1)},X_{(2)},...,X_{(n)} X(1),X(2),...,X(n)的实现。对于任意实数 x x x,令 F n ( x ) = { 0 , x &lt; x 1 k n , x ( k ) ≤ x &lt; x ( k + 1 ) 1 , x ≥ x ( n ) F_n(x)= \begin {cases} 0, &amp; x&lt;x_{1} \\ \\ \frac{k}{n},&amp;x_{(k)} \le x &lt; x_{(k+1)}\\ \\ 1,&amp;x\ge x_{(n)} \end{cases} Fn(x)=0,nk,1,x<x1x(k)x<x(k+1)xx(n)
其中, k k k为正整数,且 1 ≤ k ≤ n 1\le k \le n 1kn

F n ( x ) F_n(x) Fn(x)被称之为总体 X X X经验分布函数。经验分布函数具有分布函数的基本性质,聚集了样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn中有关总体分布函数的信息。样本实现不同,所确定的经验分布函数存在差异,因此,经验分布函数是一个统计量。

(二)三大分布

(1) χ 2 \chi^2 χ2分布

已知随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn相互独立,且 X i ∼ N ( 0 , 1 ) , i = 1 , 2 , . . . , n X_i \sim N(0,1),i=1,2,...,n XiN(0,1),i=1,2,...,n。令 X = ∑ i = 1 n X i 2 X=\sum_{i=1}^n X_i^2 X=i=1nXi2 X X X的概率分布被称之为自由度为 n n n χ 2 \chi^2 χ2分布,自由度是指求和式中相互独立的项数。若 X X X服从自由度为 n n n χ 2 \chi^2 χ2分布,一般简记为 X ∼ χ 2 ( n ) X \sim \chi ^2(n) Xχ2(n)。可以证明自由度为n的 分布的概率密度函数为 f X ( x ) = { 1 2 n 2 Γ ( n 2 ) x n 2 − 1 e x p { − x 2 } , x &gt; 0 0 , x ≤ 0 f_X(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}exp\{-\frac{x}{2}\},&amp;x&gt;0\\ \\ 0,&amp;x\le 0 \end{cases} fX(x)=22nΓ(2n)1x2n1exp{2x},0,x>0x0

χ 2 \chi^2 χ2分布的性质:
1.若 X ∼ χ 2 ( n ) X \sim \chi ^2(n) Xχ2(n),则 E ( X ) = n , V a r ( X ) = 2 n 。 E(X) = n,Var(X)=2n。 E(X)=n,Var(X)=2n

2.若 X 1 ∼ χ 2 ( n 1 ) , X 2 ∼ χ 2 ( n 2 ) X_1 \sim \chi ^2(n_1),X_2 \sim \chi ^2(n_2) X1χ2(n1),X2χ2(n2), X 1 X_1 X1 X 2 X_2 X2相互独立,则 X 1 + X 2 ∼ χ 2 ( n 1 + n 2 ) X_1+X_2 \sim \chi ^2(n_1+n_2) X1+X2χ2(n1+n2)

3.若 X 3 = X 1 + X 2 , X 1 ∼ χ 2 ( n 1 ) , X 3 ∼ χ 2 ( n 3 ) , n 3 &gt; n 1 X_3 = X_1 + X_2,X_1 \sim \chi ^2(n_1),X_3 \sim \chi ^2(n_3),n_3&gt;n_1 X3=X1+X2,X1χ2(n1),X3χ2(n3),n3>n1,且 X 1 X_1 X1 X 2 X_2 X2相互独立,则 2 ∼ χ 2 ( n 3 , n 1 ) _2 \sim \chi ^2(n_3,n_1) 2χ2(n3,n1)

4.若 X ∼ χ 2 ( n ) X \sim \chi ^2(n) Xχ2(n),则 X − n 2 n d → N ( 0 , 1 ) \frac{X-n}{\sqrt{2n}} \underrightarrow{ d} N(0,1) 2n Xn dN(0,1)

其中,记号 d → \underrightarrow{d} d表示随机变量序列依分布收敛。

(2)学生氏 t 2 t^2 t2分布

已知随机变量 X 1 ∼ N ( 0 , 1 ) , X 2 ∼ χ 2 ( n ) X_1 \sim N(0,1),X_2 \sim \chi^2(n) X1N(0,1),X2χ2(n),且 X 1 X_1 X1 X 2 X_2 X2相互独立,令 X = X 1 X 2 n X=\frac{X_1}{\sqrt{\frac{X_2}{n}}} X=nX2 X1
X X X的概率分布被称之为自由度为 n n n的学生氏分布。若 X X X服从自由度为 n n n的学生氏分布,一般简记为 X ∼ t ( n ) X\sim t(n) Xt(n)。自由度为 n n n t t t分布的概率密度函数为: f X ( x ) = { Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + x 2 n ) − n + 1 2 , x &gt; 0 0 , x ≤ 0 f_X(x) = \begin{cases} \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma{(\frac{n}{2})}}{(1+\frac{x^2}{n})}^{-\frac{n+1}{2}},&amp;x&gt;0\\ \\ 0,&amp;x\le 0 \end{cases} fX(x)=nπ Γ(2n)Γ(2n+1)(1+nx2)2n+1,0,x>0x0

学生氏 t t t分布的性质:
1.若 X ∼ t ( n ) X \sim t(n) Xt(n),则当 n &gt; 1 n&gt;1 n>1时, E ( X ) = 0 E(X)=0 E(X)=0。当 n &gt; 2 n&gt;2 n>2时, V a r ( X ) = n n − 2 Var(X)=\frac{n}{n-2} Var(X)=n2n

2.若 X ∼ t ( n ) X \sim t(n) Xt(n),则有 l i m n → ∞ f X ( x ) = 1 2 π e x p { − x 2 2 } lim_{n \rightarrow \infty}f_X(x)=\frac{1}{\sqrt{2\pi}}exp\{-\frac{x^2}{2}\} limnfX(x)=2π 1exp{2x2}
n n n趋于无穷时,自由度为 n n n的学生 t t t分布趋于标准正太分布。但当 n n n较小时,自由度为 n n n的学生 t t t分布于标准正太分布有较大差异,表现在自由度为 n n n的学生 t t t分布的概率密度函数值在远离0处大于标准正太分布的概率密度函数值。

(3) F F F分布

已知随机变量 X 1 ∼ χ 2 ( n 1 ) , X 2 ∼ χ 2 ( n 2 ) X_1 \sim \chi^2(n_1),X_2 \sim \chi^2(n_2) X1χ2(n1),X2χ2(n2),且 X 1 X_1 X1 X 2 X_2 X2相互独立,令
X = X 1 / n 1 X 2 / n 2 X=\frac{X_1/n_1}{X_2/n_2} X=X2/n2X1/n1
则概率分布被称之为第一自由度为 n 1 n_1 n1的,第二自由度为 n 2 n_2 n2 F F F分布,若 X X X服从第一自由度为 n 1 n_1 n1,第二自由度为 n 2 n_2 n2 F F F分布,一般简记为 X ∼ F ( n 1 , n 2 ) X \sim F(n_1,n_2) XF(n1,n2)

F F F分布的性质:
1.若 X ∼ F ( n 1 , n 2 ) X \sim F(n_1,n_2) XF(n1,n2),则当 n 2 &gt; 2 n_2&gt;2 n2>2时, E ( X ) = n 2 n 2 − 2 E(X)=\frac{n_2}{n_2-2} E(X)=n22n2,当 n 2 &gt; 4 n_2&gt;4 n2>4时, V a r ( X ) = 2 n 2 2 ( n 1 + n 2 − 2 ) n 1 ( n 2 − 2 ) ( n 2 − 4 ) Var(X)=\frac{2n_2^2(n_1+n_2-2)}{n_1(n_2-2)(n_2-4)} Var(X)=n1(n22)(n24)2n22(n1+n22)

2.若 X ∼ F ( n 1 , n 2 ) X \sim F(n_1,n_2) XF(n1,n2),则 X − 1 ∼ F ( n 2 , n 1 ) X^{-1} \sim F(n_2,n_1) X1F(n2,n1)

3.若 X ∼ t ( n ) X \sim t(n) Xt(n),则 X 2 ∼ F ( 1 , n ) X^2 \sim F(1,n) X2F(1,n)

(三)统计估计

统计估计理论是数理统计的重要组成部分,它主要涉及统计估计问题求解的基本思想和方法。所谓统计估计问题是指如何有效地利用来自总体的X样本的样本信息求解总体 X X X分布的近似解析表达式或总体X有关量的近似值问题。

数理统计理论中,被用于对参数进行估计的统计量被称之为估计量,将样本实现带入估计量所确定的估计量的实现被称之为估计。有样本确定待估量的方法称之为估计方法

(1)点估计

假设 θ \theta θ为总体 X X X的参数, X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是抽自总体 X X X的样本,由样本确定参数 θ \theta θ的估计量,进而代入样本实现获得估计,这种估计形式被称之为点估计,有时也被称之为定值估计

由样本获得参数 θ \theta θ的估计量 θ ^ 1 \hat{\theta}_1 θ^1 θ ^ 2 \hat{\theta}_2 θ^2,然后代入样本实现获得估计 θ ^ 10 \hat{\theta}_{10} θ^10 θ ^ 20 \hat{\theta}_{20} θ^20,进行形成区间 [ θ ^ 10 , θ ^ 20 ] [\hat{\theta}_{10},\hat{\theta}_{20}] [θ^10,θ^20],以其估计参数 θ \theta θ所在范围,这种估计形式被称之为区间估计

(2)矩估计

为确定参数的估计量,首先建立估计参数与总体矩的关系表式,然后从该关系式求出估计参数的总体矩表达式,并将该表达式中的总体矩以相应的样本矩替换,得估计参数的估计量。进而将样本实现带入所估计的估计量便得到要估计的一个具体估计。

以这种思想确定参数估计的方法被称之为矩估计方法。使用矩估计方法所确定的估计量称之为矩估计量,矩估计量代入样本实现所得估计量实现被称之为参数的矩估计

矩估计的步骤:
假设总体 X X X 1 ∼ k 1 \sim k 1k阶原点矩存在, θ 1 , θ 2 , . . . , θ n \theta_1,\theta_2,...,\theta_n θ1,θ2,...,θn 为要估计的参数,则 θ 1 , θ 2 , . . . , θ n \theta_1,\theta_2,...,\theta_n θ1,θ2,...,θn的矩估计量由以下三步求得。

1.建立估计参数 θ 1 , θ 2 , . . . , θ n \theta_1,\theta_2,...,\theta_n θ1,θ2,...,θn与总体 X X X 1 ∼ k 1\sim k 1k阶的原点矩 μ 1 , μ 2 , . . . , μ n \mu_1,\mu_2,...,\mu_n μ1,μ2,...,μn之间的关系式,如下所示: { μ 1 = μ 1 ( θ 1 , θ 2 , . . . θ n ) μ 2 = μ 2 ( θ 1 , θ 2 , . . . θ n ) . . . μ k = μ k ( θ 1 , θ 2 , . . . θ n ) \begin{cases} \mu_1 = \mu_1(\theta_1,\theta_2,...\theta_n)\\ \mu_2 = \mu_2(\theta_1,\theta_2,...\theta_n)\\ ...\\ \mu_k = \mu_k(\theta_1,\theta_2,...\theta_n)\\ \end{cases} μ1=μ1(θ1,θ2,...θn)μ2=μ2(θ1,θ2,...θn)...μk=μk(θ1,θ2,...θn)
2.由上式求出要估计参数 θ 1 , θ 2 , . . . , θ n \theta_1,\theta_2,...,\theta_n θ1,θ2,...,θn 关于总体 X X X 1 ∼ k 1\sim k 1k阶的矩 μ 1 , μ 2 , . . . , μ n \mu_1,\mu_2,...,\mu_n μ1,μ2,...,μn的表达式,如下式所示,下式被称为矩估计方程组
{ θ 1 = μ 1 ( μ 1 , μ 2 , . . . μ n ) θ 2 = μ 2 ( μ 1 , μ 2 , . . . μ n ) . . . θ k = μ k ( μ 1 , μ 2 , . . . μ n ) \begin{cases} \theta_1 = \mu_1(\mu_1,\mu_2,...\mu_n)\\ \theta_2 = \mu_2(\mu_1,\mu_2,...\mu_n)\\ ...\\ \theta_k = \mu_k(\mu_1,\mu_2,...\mu_n)\\ \end{cases} θ1=μ1(μ1,μ2,...μn)θ2=μ2(μ1,μ2,...μn)...θk=μk(μ1,μ2,...μn)
3.将上式中总体 X X X 1 ∼ k 1 \sim k 1k阶的原点矩 μ 1 , μ 2 , . . . , μ n \mu_1,\mu_2,...,\mu_n μ1,μ2,...,μn以相应的样本矩 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An替换,便得要估计参数 θ 1 , θ 2 , . . . , θ n \theta_1,\theta_2,...,\theta_n θ1,θ2,...,θn的矩估计量,如下所示:
{ θ ^ 1 = θ 1 ( A 1 , A 2 , . . . A n ) θ ^ 2 = θ 2 ( A 1 , A 2 , . . . A n ) . . . θ ^ k = θ k ( A 1 , A 2 , . . . A n ) \begin{cases} \hat{\theta}_1 = \theta_1(A_1,A_2,...A_n)\\ \hat{\theta}_2 = \theta_2(A_1,A_2,...A_n)\\ ...\\ \hat{\theta}_k = \theta_k(A_1,A_2,...A_n)\\ \end{cases} θ^1=θ1(A1,A2,...An)θ^2=θ2(A1,A2,...An)...θ^k=θk(A1,A2,...An)
矩估计方法事实上就是以样本矩代替相应总体矩,以样本矩的函数代替相应总体矩的函数,体现的是一种替换的思想。

(三)参数的极大似然估计法

极大似然估计法以最大概率原理为基础,充分利用了总体所提供的新型,所求得的估计量有很多优良的性质。最大概率原理是指,假定一个随机试验E的所有基本事件为A,B,C,…。若对随机试验E仅进行一次观察,观察到的结果恰好是事件A发生,那么就认为随机试验E的条件对事件A的发生更为有利。也即事件A在随机试验E的所有基本事件A,B,C,…中发生的概率应该最大。

假定总体 X X X的概率函数( X X X为离散型)或概率密度函数( X X X为连续型)为 f θ ( x ) f_\theta (x) fθ(x),其中 θ \theta θ为未知参数,且 θ ∈ Θ \theta \in \Theta θΘ 被称之为参数空间。 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn为取自总体X的样本, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为样本的一个实现,则该样本实现的概率函数或概率密度函数为: p θ ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n f θ ( x i ) p_\theta(x_1,x_2,...,x_n)=\prod_{i=1}^nf_\theta(x_i) pθ(x1,x2,...,xn)=i=1nfθ(xi)
似然函数定义为:
L ( θ ∣ x 1 , x 2 , . . . , x n ) = ∏ i = 1 n f θ ( x i ) L(\theta|x_1,x_2,...,x_n)=\prod_{i=1}^nf_\theta(x_i) L(θx1,x2,...,xn)=i=1nfθ(xi)
极大似然估计的步骤:
只要总体 X X X的概率或概率密度函数 f θ ( x ) f_\theta(x) fθ(x)已知,参数 θ \theta θ的极大似然估计是可以按照程式化的过程来求解,其一般步骤如下所示:

1.求似然函数,对似然函数取对数建立对数似然函数 l ( θ ∣ x 1 , x 2 , . . . , x n ) l(\theta|x_1,x_2,...,x_n) l(θx1,x2,...,xn)

2.求 l ( θ ∣ x 1 , x 2 , . . . , x n ) l(\theta|x_1,x_2,...,x_n) l(θx1,x2,...,xn)的最大值点,得参数 θ \theta θ的极大似然估计 θ ^ ( x 1 , x 2 , . . . , x n ) \hat\theta(x_1,x_2,...,x_n) θ^(x1,x2,...,xn)

3.以样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn对应替换参数 θ \theta θ极大似然估计 θ ^ ( x 1 , x 2 , . . . , x n ) \hat\theta(x_1,x_2,...,x_n) θ^(x1,x2,...,xn)中的 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,得参数 θ ^ \hat\theta θ^的极大似然估计量 θ ^ ( X 1 , X 2 , . . . , X n ) \hat\theta(X_1,X_2,...,X_n) θ^(X1,X2,...,Xn)

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值