设总体
X
X
X 的密度为
p
(
x
)
,
a
≤
x
≤
b
p(x), a \leq x \leq b
p(x),a≤x≤b , 分布函数为
F
(
x
)
,
X
1
,
X
2
…
…
,
X
n
F(x), X_{1}, X_{2} \ldots \ldots, X_{n}
F(x),X1,X2……,Xn 是取自总体 X 的样本, 则次序统计量
(
X
(
i
)
,
X
(
j
)
)
(
i
<
j
)
\left(X_{(i)}, X_{(j)}\right)(i<j)
(X(i),X(j))(i<j) 的联合密度函数为
p
i
j
(
y
,
z
)
=
{
n
!
(
i
−
1
)
!
(
j
−
i
−
1
)
!
(
n
−
j
)
!
[
F
(
y
)
]
i
−
1
[
F
(
z
)
−
F
(
y
)
]
j
−
i
−
1
[
(
1
−
F
(
z
)
]
n
−
j
p
(
y
)
p
(
z
)
,
a
≤
y
≤
z
≤
b
0
p_{i j}(y, z)=\left\{\begin{array}{c}\frac{n !}{(i-1) !(j-i-1) !(n-j) !}[F(y)]^{i-1}[F(z)-F(y)]^{j-i-1}\left[(1-F(z)]^{n-j} p(y) p(z), \quad a \leq y \leq z \leq b\right. \\ 0\end{array}\right.
pij(y,z)={(i−1)!(j−i−1)!(n−j)!n![F(y)]i−1[F(z)−F(y)]j−i−1[(1−F(z)]n−jp(y)p(z),a≤y≤z≤b0
2021年7月2日10:39:43