两个次序统计量的联合密度函数

设总体 X X X 的密度为 p ( x ) , a ≤ x ≤ b p(x), a \leq x \leq b p(x),axb , 分布函数为 F ( x ) , X 1 , X 2 … … , X n F(x), X_{1}, X_{2} \ldots \ldots, X_{n} F(x),X1,X2,Xn 是取自总体 X 的样本, 则次序统计量 ( X ( i ) , X ( j ) ) ( i < j ) \left(X_{(i)}, X_{(j)}\right)(i<j) (X(i),X(j))(i<j) 的联合密度函数为
p i j ( y , z ) = { n ! ( i − 1 ) ! ( j − i − 1 ) ! ( n − j ) ! [ F ( y ) ] i − 1 [ F ( z ) − F ( y ) ] j − i − 1 [ ( 1 − F ( z ) ] n − j p ( y ) p ( z ) , a ≤ y ≤ z ≤ b 0 p_{i j}(y, z)=\left\{\begin{array}{c}\frac{n !}{(i-1) !(j-i-1) !(n-j) !}[F(y)]^{i-1}[F(z)-F(y)]^{j-i-1}\left[(1-F(z)]^{n-j} p(y) p(z), \quad a \leq y \leq z \leq b\right. \\ 0\end{array}\right. pij(y,z)={(i1)!(ji1)!(nj)!n![F(y)]i1[F(z)F(y)]ji1[(1F(z)]njp(y)p(z),ayzb0


2021年7月2日10:39:43

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值