学习笔记:隐马尔科夫

马尔科夫模型是一种数学模型,用于描述一个系统随时间演变的行为。它由初始状态概率向量π、状态转移矩阵A和混淆矩阵B定义。一阶马尔科夫模型常用于减少计算复杂性。隐马尔科夫模型(HMM)是马尔科夫模型的扩展,包含了隐藏状态和可观察状态,广泛应用于语音识别和序列预测。HMM的三个主要任务包括评估、解码和学习。尽管HMM简化了状态间的依赖关系,但这也成为其局限性之一。
摘要由CSDN通过智能技术生成

马尔科夫过程

马尔科夫模型

 

        aij从i状态转移到j状态的概率

        n元条件概率计算量会很大,解决办法:一阶马尔科夫模型降低事件之间的关联度

 

 定义:马尔科夫模型可以用一个三元组(π,A,B)来定义:

        1. π 表示初始状态概率的向量

        2. A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率

        3. B =(bij)混淆矩阵  P(Yi|Xj)在某个时刻因隐藏状态为Xj而观察状态为Yi的概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值