马尔科夫过程
马尔科夫模型
aij从i状态转移到j状态的概率
n元条件概率计算量会很大,解决办法:一阶马尔科夫模型降低事件之间的关联度
定义:马尔科夫模型可以用一个三元组(π,A,B)来定义:
1. π 表示初始状态概率的向量
2. A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率
3. B =(bij)混淆矩阵 P(Yi|Xj)在某个时刻因隐藏状态为Xj而观察状态为Yi的概率
aij从i状态转移到j状态的概率
n元条件概率计算量会很大,解决办法:一阶马尔科夫模型降低事件之间的关联度
定义:马尔科夫模型可以用一个三元组(π,A,B)来定义:
1. π 表示初始状态概率的向量
2. A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率
3. B =(bij)混淆矩阵 P(Yi|Xj)在某个时刻因隐藏状态为Xj而观察状态为Yi的概率