估计误差和近似误差的区别

近似误差:可以理解为对现有训练集的训练误差。 
估计误差:可以理解为对测试集的测试误差。

近似误差关注训练集,如果近似误差小了会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。模型本身不是最接近最佳模型。

估计误差关注测试集,估计误差小了说明对未知数据的预测能力好。模型本身最接近最佳模型。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试