蚁群算法(包含TSP问题的matlab代码实现)

蚁群算法(ACA , Ant Colony Algorithm)

1 算法背景

 蚁群算法是由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种用来寻找优化路径的概率型算法,本质上是进化算法中的一种启发式全局优化算法。

 在蚂蚁觅食的过程中,单个蚂蚁行为比较简单,你可能发现不了什么特别的,但是整个蚁群的行为却整体体现出了一些智能。蚁群可以在不同的环境中,寻找到最短到达食物源的路径。在找食物的过程中,蚂蚁会在走过的路径中释放一种“信息素”的物质,用来标识自己的行走路径,蚂蚁具有感知能力,会沿着信息素浓度高的路径行走。而每个蚂蚁走过都会释放信息素,这也就是一种正反馈机制,信息素越浓,走的蚂蚁越多,走的蚂蚁越多,信息素越浓,最后整个蚁群都会沿着最短的路径寻找食物。

2 算法思想

        蚁群算法的基本思想就是选择信息素浓度最大的路径走,碰到还没走过的路,就随机挑选一条路走。用蚂蚁行走的路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。我们可以理解为蚂蚁的信息素含量在一次觅食过程中是一定量的,路径越长,信息素的含量浓度越小,路径越短,信息素的浓度越大。随着时间的推移以及正反聩机制,路径最短的信息素浓度会越来越大,最终整个蚁群都会集中到最佳的路径上,也就是待优化问题的最优解。

3 算法步骤

蚁群算法的步骤可以归纳为:

(1)对相关参数进行初始化;
(2)随机将蚂蚁放于不同出发点,对每个蚂蚁计算其下个访问城市,直到有蚂蚁访问完所有城市。
(3)计算各蚂蚁经过的路径长度,记录当前迭代次数最优解,同时对路径上的信息素浓度进行更新。
(4)判断是否达到最大迭代次数,若否,返回步骤2;是,结束程序。
(5)输出结果,并根据需要输出寻优过程中的相关指标。

算法流程图如下:

 

4 算法应用

蚁群算法主要用来解决路径规划等离散优化问题,如调度问题、旅行商问题等。下面以旅行商问题为例,进行详细的介绍:

旅行商问题即TSP问题(Travelling Salesman Problem,TSP)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。

TSP问题:假设有一个旅行商人要拜访n个城市,需选择一条路线,要求所有城市走一遍回到起点,同时使所走路程最短。

(可以提取出来关键信息:每个结点只能走一次;所有结点必须经过;最短路径;最后回到起点)

5 算法实现

解决的问题:一个旅行商人要拜访全国31个省会城市,需要选择最短一条路线,要求所有城市走一遍回到起点。以坐标的形式记录城市的位置数据。

使用蚁群算法,用matlab实现TSP问题代码如下:

%% 解决的问题:一个旅行商人要拜访全国31个省会城市,需要选择最短的路径
clear all; 
close all;
clc ;   
%% 第一步:变量初始化
m=50;    % m 蚂蚁个数
Alpha=1;  % Alpha表征信息素重要程度的参数
Beta=5;  %Beta表征启发式因子重要程度的参数
Rho=0.1; % Rho信息素蒸发系数
NC_max=200; %最大迭代次数
Q=100;         %信息素增加强度系数

C=[
1304 2312;
3639 1315;
4177 2244;
3712 1399;
3488 1535;
3326 1556;
3238 1229;
4196 1004;
4312 790;
4386 570;
3007 1970;
2562 1756;
2788 1491;
2381 1676;
1332 695;
3715 1678;
3918 2179;
4061 2370;
3780 2212;
3676 2578;
4029 2838;
4263 2931;
3429 1908;
3507 2367;
3394 2643;
3439 3201;
2935 3240;
3140 3550;
2545 2357;
2778 2826;
2370 2975
];    %31个省会坐标数据
% R_best 各代最佳路线
% L_best 各代最佳路线的长度
n=size(C,1);%n个城市
D=zeros(n,n);%D表示完全图的赋权邻接矩阵

%% 计算每个城市之间的距离
for i=1:n
    for j=1:n
        if i~=j
            D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
        else
            D(i,j)=eps;      %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
        end
        D(j,i)=D(i,j);   %对称矩阵
    end
end
%% 变量
Eta=1./D;          %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);     %Tau为信息素矩阵
Tabu=zeros(m,n);   %存储并记录路径的生成
NC=1;               %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n);       %各代最佳路线
L_best=inf.*ones(NC_max,1);   %各代最佳路线的长度  %inf 正无穷
L_ave=zeros(NC_max,1);        %各代路线的平均长度

%% 进行蚁群算法
while NC<=NC_max        
    %第二步:将m只蚂蚁放到n个城市上
    Randpos=[];   %随即存取
    for i=1:(ceil(m/n))
        Randpos=[Randpos,randperm(n)];%randperm(n)产生1-n的随机数
    end
    Tabu(:,1)=(Randpos(1,1:m))';   %将路径矩阵里面的第一列随机初始到一个城市
    
    %第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
    for j=2:n     
        for i=1:m
            visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
            J=zeros(1,(n-j+1));       %待访问的城市
            P=J;                      %待访问城市的选择概率分布
            Jc=1;
            for k=1:n
                if length(find(visited==k))==0   %开始时置0
                    J(Jc)=k;
                    Jc=Jc+1;                         %访问的城市个数自加1
                end
            end
            %下面计算待选城市的概率分布
            for k=1:length(J)
                P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
            end
            P=P/(sum(P));
            %按概率原则选取下一个城市
            Pcum=cumsum(P);     %cumsum,元素累加即求和
            Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
            to_visit=J(Select(1));
            Tabu(i,j)=to_visit;
        end
    end
    
    if NC>=2
        Tabu(1,:)=R_best(NC-1,:); 
    end
  
    %第四步:记录本次迭代最佳路线
    L=zeros(m,1);     %开始距离为0,m*1的列向量
    for i=1:m
        R=Tabu(i,:);
        for j=1:(n-1)
            L(i)=L(i)+D(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离
        end
        L(i)=L(i)+D(R(1),R(n));      %加上回到起点的距离,得到一轮下来后走过的距离
    end
    L_best(NC)=min(L);           %最佳距离取最小
    pos=find(L==L_best(NC));
    R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
    L_ave(NC)=mean(L);           %此轮迭代后的平均距离
    NC=NC+1;                      %迭代继续

    %第五步:更新信息素
    Delta_Tau=zeros(n,n);        %开始时信息素为n*n的0矩阵
    for i=1:m
        for j=1:(n-1)
            Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
            %此次循环在路径(i,j)上的信息素增量
        end
        Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
        %此次循环在整个路径上的信息素增量
    end
    Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
    %第六步:禁忌表清零(禁忌表:防止搜索过程中出现循环,避免局部最优)
    Tabu=zeros(m,n);             %%直到最大迭代次数
end

%%  第七步:输出结果,可视化
Pos=find(L_best==min(L_best)); %找到最佳路径
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

figure(1) 
plot(L_best)
xlabel('迭代次数')
ylabel('最短路径长度')
title('每代最短路径长度进化曲线')

figure(2)
%绘制第一个子图形,路线图
subplot(1,2,1)                 
N=length(Shortest_Route);
scatter(C(:,1),C(:,2)); %绘制闪点图
 hold on
 plot([C(Shortest_Route(1),1),C(Shortest_Route(N),1)],[C(Shortest_Route(1),2),C(Shortest_Route(N),2)],'g')
 hold on
for ii=2:N
    plot([C(Shortest_Route(ii-1),1),C(Shortest_Route(ii),1)],[C(Shortest_Route(ii-1),2),C(Shortest_Route(ii),2)],'g')
     hold on
end
title('旅行商最短路线结果图 ')

%绘制第二个子图形
subplot(1,2,2)                  
plot(L_best)
hold on                         %保持图形
plot(L_ave,'r')
legend('最短距离','平均距离')
title('平均距离和最短距离')     %标题

实验结果如图:

6 算法优缺点

优点:

  • 正反馈,可以较快发现较好解
  • 启发式搜索,反映了搜索中的先验性、确定性因素的强度
  • 鲁棒性强,不易受个体影响

缺点:

  • 需要较长搜索时间
  • 容易出现停滞现象

7 算法改进

蚁群算法的改进可以从以下方面进行考虑:

(1)搜索速度改进,引入侦察蚁、工蚁。

(2)搜索策略改进,加入扰动、添加牵引力引导蚂蚁朝全局最优搜索。

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值