蚁群算法(ACA , Ant Colony Algorithm)
1 算法背景
蚁群算法是由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种用来寻找优化路径的概率型算法,本质上是进化算法中的一种启发式全局优化算法。
在蚂蚁觅食的过程中,单个蚂蚁行为比较简单,你可能发现不了什么特别的,但是整个蚁群的行为却整体体现出了一些智能。蚁群可以在不同的环境中,寻找到最短到达食物源的路径。在找食物的过程中,蚂蚁会在走过的路径中释放一种“信息素”的物质,用来标识自己的行走路径,蚂蚁具有感知能力,会沿着信息素浓度高的路径行走。而每个蚂蚁走过都会释放信息素,这也就是一种正反馈机制,信息素越浓,走的蚂蚁越多,走的蚂蚁越多,信息素越浓,最后整个蚁群都会沿着最短的路径寻找食物。
2 算法思想
蚁群算法的基本思想就是选择信息素浓度最大的路径走,碰到还没走过的路,就随机挑选一条路走。用蚂蚁行走的路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。我们可以理解为蚂蚁的信息素含量在一次觅食过程中是一定量的,路径越长,信息素的含量浓度越小,路径越短,信息素的浓度越大。随着时间的推移以及正反聩机制,路径最短的信息素浓度会越来越大,最终整个蚁群都会集中到最佳的路径上,也就是待优化问题的最优解。
3 算法步骤
蚁群算法的步骤可以归纳为:
(1)对相关参数进行初始化;
(2)随机将蚂蚁放于不同出发点,对每个蚂蚁计算其下个访问城市,直到有蚂蚁访问完所有城市。
(3)计算各蚂蚁经过的路径长度,记录当前迭代次数最优解,同时对路径上的信息素浓度进行更新。
(4)判断是否达到最大迭代次数,若否,返回步骤2;是,结束程序。
(5)输出结果,并根据需要输出寻优过程中的相关指标。
算法流程图如下:
4 算法应用
蚁群算法主要用来解决路径规划等离散优化问题,如调度问题、旅行商问题等。下面以旅行商问题为例,进行详细的介绍:
旅行商问题即TSP问题(Travelling Salesman Problem,TSP)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
TSP问题:假设有一个旅行商人要拜访n个城市,需选择一条路线,要求所有城市走一遍回到起点,同时使所走路程最短。
(可以提取出来关键信息:每个结点只能走一次;所有结点必须经过;最短路径;最后回到起点)
5 算法实现
解决的问题:一个旅行商人要拜访全国31个省会城市,需要选择最短一条路线,要求所有城市走一遍回到起点。以坐标的形式记录城市的位置数据。
使用蚁群算法,用matlab实现TSP问题代码如下:
%% 解决的问题:一个旅行商人要拜访全国31个省会城市,需要选择最短的路径
clear all;
close all;
clc ;
%% 第一步:变量初始化
m=50; % m 蚂蚁个数
Alpha=1; % Alpha表征信息素重要程度的参数
Beta=5; %Beta表征启发式因子重要程度的参数
Rho=0.1; % Rho信息素蒸发系数
NC_max=200; %最大迭代次数
Q=100; %信息素增加强度系数
C=[
1304 2312;
3639 1315;
4177 2244;
3712 1399;
3488 1535;
3326 1556;
3238 1229;
4196 1004;
4312 790;
4386 570;
3007 1970;
2562 1756;
2788 1491;
2381 1676;
1332 695;
3715 1678;
3918 2179;
4061 2370;
3780 2212;
3676 2578;
4029 2838;
4263 2931;
3429 1908;
3507 2367;
3394 2643;
3439 3201;
2935 3240;
3140 3550;
2545 2357;
2778 2826;
2370 2975
]; %31个省会坐标数据
% R_best 各代最佳路线
% L_best 各代最佳路线的长度
n=size(C,1);%n个城市
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
%% 计算每个城市之间的距离
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
end
D(j,i)=D(i,j); %对称矩阵
end
end
%% 变量
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵
Tabu=zeros(m,n); %存储并记录路径的生成
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度 %inf 正无穷
L_ave=zeros(NC_max,1); %各代路线的平均长度
%% 进行蚁群算法
while NC<=NC_max
%第二步:将m只蚂蚁放到n个城市上
Randpos=[]; %随即存取
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];%randperm(n)产生1-n的随机数
end
Tabu(:,1)=(Randpos(1,1:m))'; %将路径矩阵里面的第一列随机初始到一个城市
%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0 %开始时置0
J(Jc)=k;
Jc=Jc+1; %访问的城市个数自加1
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%第四步:记录本次迭代最佳路线
L=zeros(m,1); %开始距离为0,m*1的列向量
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %加上回到起点的距离,得到一轮下来后走过的距离
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1; %迭代继续
%第五步:更新信息素
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
%此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
%第六步:禁忌表清零(禁忌表:防止搜索过程中出现循环,避免局部最优)
Tabu=zeros(m,n); %%直到最大迭代次数
end
%% 第七步:输出结果,可视化
Pos=find(L_best==min(L_best)); %找到最佳路径
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
figure(1)
plot(L_best)
xlabel('迭代次数')
ylabel('最短路径长度')
title('每代最短路径长度进化曲线')
figure(2)
%绘制第一个子图形,路线图
subplot(1,2,1)
N=length(Shortest_Route);
scatter(C(:,1),C(:,2)); %绘制闪点图
hold on
plot([C(Shortest_Route(1),1),C(Shortest_Route(N),1)],[C(Shortest_Route(1),2),C(Shortest_Route(N),2)],'g')
hold on
for ii=2:N
plot([C(Shortest_Route(ii-1),1),C(Shortest_Route(ii),1)],[C(Shortest_Route(ii-1),2),C(Shortest_Route(ii),2)],'g')
hold on
end
title('旅行商最短路线结果图 ')
%绘制第二个子图形
subplot(1,2,2)
plot(L_best)
hold on %保持图形
plot(L_ave,'r')
legend('最短距离','平均距离')
title('平均距离和最短距离') %标题
实验结果如图:
6 算法优缺点
优点:
- 正反馈,可以较快发现较好解
- 启发式搜索,反映了搜索中的先验性、确定性因素的强度
- 鲁棒性强,不易受个体影响
缺点:
- 需要较长搜索时间
- 容易出现停滞现象
7 算法改进
蚁群算法的改进可以从以下方面进行考虑:
(1)搜索速度改进,引入侦察蚁、工蚁。
(2)搜索策略改进,加入扰动、添加牵引力引导蚂蚁朝全局最优搜索。