Math
MXRSX
希望每天能够自律点,记录一些学到的东西。要足够专业
【要努力成为一个合格的打工人!2022/7】
展开
-
单峰函数与多峰函数
单峰函数:在所考虑的区间中只有一个严格局部极大值(峰值)的实值函数。单谷函数:在所考虑的区间中只有一个严格局部极小值(谷值)的实值函数。多峰函数:在所考虑的区间中有多个局部极大值(峰值)的实值函数。多谷函数:在所考虑的区间中有多个局部极小值(谷值)的实值函数。凸函数:凹函数:...原创 2020-11-01 21:18:10 · 9766 阅读 · 0 评论 -
优化所使用到的函数记录
1.Griewank(格里旺克)函数定义:该函数特点:在(0,0,0,0.......0)处有一个全局极小值0,有无数个局部极小值。函数图像:2.Rastrigin函数定义:该函数特点:在(0,0,0,0.......0)处有一个全局极小值0函数图像:3.Schaffer函数定义:y=0.5-((sin(x1^2+x2^2)^0.5)-0.5)./(1+0.001*(x1^2+x2^2))^2(以两个自变量为例)特点:在x=(0,0,…,0..原创 2020-10-05 18:01:24 · 723 阅读 · 0 评论 -
0.618
0.618是神秘的自然常数——黄金分割数。在宇宙万物中,凡是符合黄金分割的,被人们公认为是最美的。2000多年前,多希腊的数学家欧多克索斯发现:将一条线段AB分割成长短两条线段AP、PB,若短线段PB与长线段AP的长度之比等于长线段AP与整个线段AB的长度之比,那么线段AP为线段PB与线段AB的比例中项,并且可以计算出比值约等于0.618.古希腊柏拉图将此分割称为黄金分割,点P为线段AB的黄金分割点,这个比值也被称为黄金分割数。人们对于黄金分割的追求遍布于科学、艺术、社会等各个领域。在几何中存在原创 2020-08-23 16:34:08 · 644 阅读 · 0 评论 -
特殊的自然常数π以及e
1.关于π圆周率π或者pi, 是圆周的周长和它的直径的比值。它的值, 不取决于圆周的大小, 无论圆周是大是小, π的值都是恒定不变的。π产生于圆周, 但是在数学中它却无处不在, 比如概率论、流体力学、光学、甚至量子理论中。π是一个无理数,我们无法知道π的精确数值,但在科学中应用非常广,在公式中出现非常频繁。人们在古时候就对圆周周长和直径的比值产生了浓厚的兴趣。在公元前2000年左右, 巴比伦人发现了周长大约是直径的3倍。公元250年阿基米德给出此比值的近似值为22/7。公元1706年,威尔士数学家.原创 2020-08-09 17:34:08 · 3477 阅读 · 0 评论 -
重心、形心以及质心
质心与形心以及重心原创 2020-07-29 09:29:53 · 9181 阅读 · 0 评论 -
标量、向量、矩阵与张量
如题原创 2020-07-28 17:29:47 · 1930 阅读 · 0 评论 -
Lévy过程(莱维过程)
1 背景在一般的世界中,运动有两类形式:一类是连续轨道运动;另一类则是不连续轨道运动,也就是常说的带跳的过程。在概率论中,研究的最多的有两个基本模型。一个是大家熟悉的布朗运动,它是典型的连续过程,只是说在随机因素的干扰下,它的轨道看起来并不光滑,而是有些杂乱无章的,但它的轨道毕竟还是连续的。基于布朗运动,概率学家发展了一套完善的理论,我们叫它随机分析。另一个过程叫做泊松过程。布朗运动:被分子撞击的悬浮微粒做无规则运动的现象叫做布朗运动(悬浮在液体或气体中的微粒所做的永不停息的无规则运动)。了泊松原创 2020-07-02 21:11:43 · 21979 阅读 · 2 评论 -
全概率公式和贝叶斯公式
一 概念回顾:1.若事件A1,A2,......An构成一个完备事件组且都有正概率,则对任意一个事件B,有公式P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+......+P(An)P(B|An) 即此公式即为全概率公式。2.事件A1,A2,......An构成一个完备事件组且都有正概率,则贝叶斯公式为:...原创 2019-11-03 16:30:21 · 1177 阅读 · 0 评论