代码知识
文章平均质量分 88
深度学习、机器学习代码
my991201
这个作者很懒,什么都没留下…
展开
-
学习一维卷积的代码
的形状取决于卷积层的参数:输入通道数、输出通道数和核的大小。是 3,那么卷积层的权重张量的形状应该是。沿着序列长度进行一维卷积。原创 2024-07-02 20:15:24 · 325 阅读 · 0 评论 -
drebin代码解读
在基础上修改了一点点本地文件所在位置E:\0.code\2014drebin\drebin-master把原本的androguard文件删除,导入了androguard库运行代码(cd到了src目录)原创 2024-06-22 12:00:05 · 571 阅读 · 0 评论 -
模型中的解释机制
它生成了分类结果的详细报告,包含了每个类的精确度 (precision)、召回率 (recall)、F1 分数 (F1-score) 和支持数 (support)。具体来说,在线性分类模型(如线性支持向量机(Linear SVM)或线性回归模型)中,这种乘法计算表示每个特征对决策函数输出的影响。总的贡献值 0.15 是决策函数的输出(忽略偏置项),通常这个值再经过一个激活函数(例如 SVM 中的符号函数)得到最终的分类结果。通过这种方式,你可以识别出在每个样本的预测中最重要的特征,并生成相应的解释。原创 2024-06-21 17:55:12 · 708 阅读 · 0 评论 -
lua torch
首先,创建一个自定义任务来运行你的 Lua 脚本使用th命令。打开 VSCode,然后按打开命令面板。输入并选择它。选择,然后选择Others。这将打开一个新的tasks.json文件。添加一个新的任务来使用th运行你的脚本:"tasks": ["args": ["${file}"],"group": {},},原创 2024-05-31 10:55:41 · 1147 阅读 · 0 评论 -
时间序列学习(csdn上学习的专题)
学习时间序列模型原创 2023-11-29 12:55:58 · 123 阅读 · 1 评论 -
一些有用的链接
一些重要的链接原创 2023-11-24 12:56:58 · 383 阅读 · 1 评论 -
小土堆P15dataloader笔记
normalization layers(归一化)的作用:加快神经网络的训练速度dropout layers:防止过拟合,比较简单可以拿来练手,看有没有看懂官方文档embedding layers:自然语言处理用到的,distance function:计算误差self.liner1 = Linear(196608,10)# 输入feature, 输出feature# 搭建网络。原创 2023-05-19 22:33:24 · 43 阅读 · 0 评论