模型中的解释机制

在E:\0.code\2014drebin\drebin-master\newpaper文件中进行测试

样本的特征值与模型的权重向量相乘代表什么

        样本的特征值与模型的权重向量相乘(即点积)代表每个特征在模型预测中所起的作用或贡献。具体来说,在线性分类模型(如线性支持向量机(Linear SVM)或线性回归模型)中,这种乘法计算表示每个特征对决策函数输出的影响。

详细解释

假设我们有一个线性模型,其决策函数表示为:

点积的意义

点积计算表示每个特征值与其对应的权重相乘,然后将这些乘积相加得到一个总和,这个总和反映了模型对给定样本的预测:

例子

假设我们有一个简单的二分类问题,通过一个线性模型进行预测。假设模型的权重向量 w和一个样本的特征向量 x如下:

预测解释

  • 第一个特征:权重为 0.2,特征值为 0.5,对预测结果贡献了 0.10。
  • 第二个特征:权重为 -0.1,特征值为 0.3,对预测结果贡献了 −0.03。
  • 第三个特征:权重为 0.4,特征值为 0.2,对预测结果贡献了 0.08。

总的贡献值 0.15 是决策函数的输出(忽略偏置项),通常这个值再经过一个激活函数(例如 SVM 中的符号函数)得到最终的分类结果。

在代码中的应用

在你的代码中,点积计算用于解释模型预测时各个特征的贡献:

for i in range(v.shape[0]):
    wx = v[i, :] * w  # 计算每个特征的权重贡献
    wv_vocab = list(zip(wx, vocab))  # 将特征权重与特征名称配对
    # 对特征权重进行排序并提取前几个重要特征
    if y_pred[i] == 1:
        wv_vocab.sort(reverse=True)
        explanations[os.path.basename(x_test_samplenames[i])]['top_features'] = wv_vocab[:NumTopFeats]
    elif y_pred[i] == -1:
        wv_vocab.sort()
        explanations[os.path.basename(x_test_samplenames[i])]['top_features'] = wv_vocab[-NumTopFeats:]

通过这种方式,你可以识别出在每个样本的预测中最重要的特征,并生成相应的解释。

classification_report(y_test, y_pred, target_names=newsgroups_test.target_names)

classification_report 是 Scikit-learn 中一个用于评估分类模型性能的函数。它生成了分类结果的详细报告,包含了每个类的精确度 (precision)、召回率 (recall)、F1 分数 (F1-score) 和支持数 (support)。让我们详细解释一下你的代码中的这部分:

print(classification_report(y_test, y_pred, target_names=newsgroups_test.target_names))

其中:

  • y_test 是测试集的真实标签。
  • y_pred 是模型对测试集的预测标签。
  • target_names 是标签对应的类别名称,即 newsgroups_test.target_names

classification_report 会生成如下形式的报告:

 

让我们解释每一列的含义:

  1. precision(精确度)

    • 精确度是指在所有被预测为正类的样本中,实际为正类的比例。公式为:TP / (TP + FP),其中 TP 是真正类(true positives),FP 是假正类(false positives)。
    • 例如,如果有100个样本被预测为class0,其中80个样本实际为class0,那么class0的精确度为0.80。
  2. recall(召回率)

    • 召回率是指在所有实际为正类的样本中,被正确预测为正类的比例。公式为:TP / (TP + FN),其中 FN 是假负类(false negatives)。
    • 例如,如果实际有100个class0的样本,其中85个被正确预测为class0,那么class0的召回率为0.85。
  3. f1-score(F1 分数)

    • F1 分数是精确度和召回率的调和平均数。公式为:2 * (precision * recall) / (precision + recall)
    • F1 分数综合了精确度和召回率,给出一个总体的评估分数。
  4. support(支持数)

    • 支持数是指每个类在测试集中实际的样本数量。
    • 例如,如果有200个样本实际属于class0,那么支持数为200。
  5. accuracy(准确率)

    • 准确率是指所有分类正确的样本数占总样本数的比例。公式为:(TP + TN) / (TP + TN + FP + FN)
    • 例如,如果总共有400个测试样本,其中312个被正确分类,那么准确率为0.78。
  6. macro avg(宏平均)

    • 宏平均是对每个类别的精确度、召回率和 F1 分数进行平均,不考虑每个类别的支持数。这种方法对各类别一视同仁。
    • 例如,(0.80 + 0.75) / 2 = 0.78。
  7. weighted avg(加权平均)

    • 加权平均是对每个类别的精确度、召回率和 F1 分数按支持数加权平均。这种方法考虑了类别样本数量的不平衡
    • 例如,(0.80 * 200 + 0.75 * 200) / 400 = 0.78。

在你的例子中, target_names 对应的是 newsgroups_test.target_names,这两个类别是 ['alt.atheism', 'sci.space']。因此,报告将显示这两个类别的分类性能。

完整代码(例子)

data = fetch_20newsgroups(subset=subset, categories=categories, remove=('headers', 'footers', 'quotes'), data_home=data_home)

是在调用 sklearn.datasets.fetch_20newsgroups 函数来下载并加载20类新闻组数据集,并将其存储在指定的文件夹中。具体参数的含义如下:

  • subset=subset:指定要加载的数据子集。可以是 'train'(训练集), 'test'(测试集),或者 'all'(全部数据集)。
  • categories=categories:指定要加载的新闻组类别。categories 是一个包含类别名称的列表。在这个例子中,是 ['alt.atheism', 'sci.space']
  • remove=('headers', 'footers', 'quotes'):移除新闻组文本中的某些部分。'headers' 会移除邮件头,'footers' 会移除邮件脚,'quotes' 会移除引用的部分。这有助于减少噪音,专注于邮件正文内容。
  • data_home=data_home:指定数据集的下载位置。data_home 参数设置了数据将被下载和存储的目录。在这个例子中,data_home 是当前脚本所在的目录,因此数据集会被下载到这个目录中。

使用了网格搜索和支持向量机

E:\0.code\2014drebin\drebin-master\src\explaination.py

# -*- coding: utf-8 -*-
import os
import json
import time
import numpy as np
from tqdm import tqdm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.datasets import fetch_20newsgroups
from joblib import dump, load

# 获取当前脚本所在的目录
current_dir = os.path.dirname(os.path.abspath(__file__))

# 定义一个函数来显示数据加载进度
def fetch_20newsgroups_with_progress(subset, categories, data_home):
    data = fetch_20newsgroups(subset=subset, categories=categories, remove=('headers', 'footers', 'quotes'), data_home=data_home)
    for _ in tqdm(range(len(data.data)), desc="Loading {} data".format(subset)):
        pass
    return data

# 第一步:加载数据
categories = ['alt.atheism', 'sci.space']
newsgroups_train = fetch_20newsgroups_with_progress(subset='train', categories=categories, data_home=current_dir)
newsgroups_test = fetch_20newsgroups_with_progress(subset='test', categories=categories, data_home=current_dir)



# 定义保存数据的函数
# 定义保存数据的函数,使用 UTF-8 编码写入文件
# 定义保存数据的函数,兼容 Python 2.7
def save_to_txt(data, filename):
    with open(filename, 'w') as file:
        for i in range(len(data.data)):
            file.write("Target: {}\n".format(data.target[i]))
            file.write("Text: {}\n".format(data.data[i].encode('utf-8')))  # 使用 UTF-8 编码写入文本
            file.write("="*50 + "\n")  # 用于分隔不同的文档


# 保存训练集和测试集到 .txt 文件
save_to_txt(newsgroups_train, 'newsgroups_train.txt')
save_to_txt(newsgroups_test, 'newsgroups_test.txt')

print("Datasets have been saved to .txt files.")


# 将文本数据转换为TF-IDF特征
vectorizer = TfidfVectorizer()
x_train = vectorizer.fit_transform(newsgroups_train.data)
x_test = vectorizer.transform(newsgroups_test.data)
feature_names = vectorizer.get_feature_names()
print(feature_names)

y_train = newsgroups_train.target
y_test = newsgroups_test.target
x_test_samplenames = newsgroups_test.filenames  # 测试集样本文件名

# 第二步:训练模型
Parameters = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}  # 定义超参数范围

T0 = time.time()
Clf = GridSearchCV(LinearSVC(max_iter=5000), Parameters, cv=5, scoring='f1', n_jobs=1)  # 使用网格搜索和交叉验证寻找最佳模型
SVMModels = Clf.fit(x_train, y_train)  # 训练模型

print("Processing time to train and find best model with GridSearchCV is %s sec." % (round(time.time() - T0, 2)))

BestModel = SVMModels.best_estimator_  # 获取最佳模型
print("Best Model Selected : {}".format(BestModel))

# 保存模型
filename = 'svm_model'
dump(Clf, filename + ".pkl")  # 保存模型

# 第三步:在测试集上评估最佳模型
T0 = time.time()
y_pred = SVMModels.predict(x_test)

print("Classification report:")
print(classification_report(y_test, y_pred, target_names=newsgroups_test.target_names))

# 第四步:解释模型预测
w = BestModel.coef_
w = w[0].tolist()
v = x_test.toarray()

vocab = vectorizer.get_feature_names()  # 获取特征名称,使用 get_feature_names 替代 get_feature_names_out
NumTopFeats = 10  # 选择前10个重要特征
explanations = {os.path.basename(s): {} for s in x_test_samplenames}  # 初始化解释字典

for i in range(v.shape[0]):
    wx = v[i, :] * w  # 计算每个特征的权重贡献
    wv_vocab = list(zip(wx, vocab))  # 将特征权重与特征名称配对
    if y_pred[i] == 1:
        wv_vocab.sort(reverse=True)
        explanations[os.path.basename(x_test_samplenames[i])]['top_features'] = wv_vocab[:NumTopFeats]
    elif y_pred[i] == 0:
        wv_vocab.sort()
        explanations[os.path.basename(x_test_samplenames[i])]['top_features'] = wv_vocab[-NumTopFeats:]
    explanations[os.path.basename(x_test_samplenames[i])]['original_label'] = int(y_test[i])
    explanations[os.path.basename(x_test_samplenames[i])]['predicted_label'] = int(y_pred[i])

# 保存解释字典为JSON文件
with open('explanations.json', 'w') as FH:
    json.dump(explanations, FH, indent=4)

print("Explanations saved to explanations.json")

  • 21
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值