【离散数学】图论 第七章(6) 图的结点着色和Welch Powell法、平面图着色、希伍德五色定理、四色定理

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 国外经典教材)离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen ,袁崇义译,机械工业出版社
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年


7.6 图的着色

平面图密切相关的一个重要问题是图的着色问题:

历史简介:

  • 1852年,英国大学生格思里 Guthrie 通过观察地图着色,提出了四色猜想,即仅用四种颜色就能对地图着色、使得相邻国家着色不同
  • 1879年,肯普 Kemple 发表了一篇论文,宣称自己完成了四色猜想成立的证明。肯普的证明方法很巧妙,人们普遍相信此问题已圆满解决。
  • 1890年,希伍德 Heawood 发现肯普的证明是错误的,但借用肯普的技巧证明了五色定理
  • 此后的几十年时间里,虽然不少人在四色猜想上耗费了大量精力,但依然一无所获。
  • 直到1976年,美国伊利诺伊大学的肯尼斯·阿佩尔 Kenneth Appel 和沃尔夫冈·哈肯 Wolfgang Haken 给出了四色猜想为真的机器证明,该证明过程在计算机上运行了1200多个机时,完成了一百多亿次逻辑判断。

图的着色分为结点着色边着色两种,下面仅介绍关于图的结点着色的概念和基本理论。

7.6.1 图的结点着色

定义6.1.1 G = ⟨ V , E ⟩ G = \lang V, E\rang G=V,E 是无向图,给图 G G G 中的每个结点指定一种颜色,若满足两个邻接的结点着色不同,则称为图 G G G结点正常着色 proper coloring 。如果可以用 k k k 种不同的颜色给图 G G G 的结点正常着色,则称 G G G结点可 k k k-着色的 k-colorable 。对图的结点正常着色所需要的最少的颜色数,称为 G G G顶着色数,简称为色数 chromatic number ,记为 χ ( G ) \chi (G) χ(G) 。色数为 k k k 的图称为 k k k 色图

韦尔奇·鲍威尔 Welch Powell,可对任意图 G G G 的结点进行正常着色,该方法的步骤如下:

  1. 将图 G G G 中的结点按度数递减的次序进行排列。当然,如果有相同度数的点,这种排列是不唯一的,但不影响算法的最终结果。
  2. 用一种与已着色结点所着颜色不同的、新的颜色 C C C ,对排列最靠前的、尚未着色的结点着色。再按排列次序,对与前面已着上颜色 C C C 的结点均不邻接的每一结点,着同样的颜色 C C C
  3. 反复重复步骤2,直到所有结点全部着色为止。

【例1】分别对图7.6.1所示的图 G G G H H H 中的结点进行正常着色。

解:(1)用韦尔奇-鲍威尔法对 G G G 进行着色,整个过程如图7.6.2所示。
首先将 G G G 中结点按照度数由大到小排序,得到序列 { b , c , d , e , f , a , g } \{ b, c, d, e, f, a, g\} {b,c,d,e,f,a,g} 。然后,将结点 b b b 着上红色,并且将与 b b b 不邻接的结点 f f f 也着上红色,注意 g g g b b b 不邻接、但与 f f f 邻接, f f f 已着上红色,所以 g g g 不能着上红色;其次,将结点 c c c 着上黄色,并将与 c c c 不邻接的 e e e 着上黄色;接下来,将结点 d d d 着上蓝色,并将与 d d d 不邻接的 a a a 着上蓝色, g g g d d d a a a 均不邻接,因此它也可以着上蓝色。这样,整个着色过程就结束了, G G G 3 3 3-着色的

(2)对于图 H H H 可用与 G G G 同样的着色过程,只是在对结点 g g g 着色时,因为 g g g a a a 邻接,所以它不能着蓝色,必须使用一种新的颜色对其着色,因此 H H H 4 4 4-着色的

利用图的色数可以解决很多现实问题,例如,学校期末考试安排各门课程的考试时间时,不能把同一位学生选修的两门课,安排在同一个时间考试。我们可将每门课程抽象为一个结点,如果两门课程有同一个学生选修,则在这两个结点间连上一条边,构成图 G G G 。如果 G G G 的色数为 k k k ,那么相同颜色的课程可以在同一时间开考,所需考试的最小次数即为 k k k 。不难发现,考试次数的上界是「学生选修的最多课程数+1」。

定理7.6.1 任何图 G = ⟨ V , E ⟩ G= \langle V, E\rangle G=V,E 均满足 χ ( G ) ≤ Δ ( G ) + 1 ,   Δ ( G ) = max ⁡ { d e g ( u ) ∣ u ∈ V } \chi(G) \le \Delta(G) + 1,\ \Delta(G) = \max \{ deg(u) \mid u\in V\} χ(G)Δ(G)+1, Δ(G)=max{deg(u)uV}
定理7.6.2 无向图 G G G 的色数 χ ( G ) = 2 \chi(G) = 2 χ(G)=2 ,当且仅当 G G G 是一个二部图。
以上定理的证明留作练习。


7.6.2 平面图的着色

地图着色问题,实质上就是对一个平面图中的进行着色,它可以通过对偶图转换为与之等价的、平面图结点着色问题。

定义7.6.2 G = ⟨ V , E ⟩ G = \langle V, E\rangle G=V,E平面图 G ′ G' G G G G 的一个平面嵌入 F ( G ′ ) F(G') F(G) G ′ G' G面集合。构造图 G ∗ G^* G ,若 G ∗ G^* G 的结点集合 V ( G ∗ ) = F ( G ′ ) V(G^*) = F(G') V(G)=F(G) ,且任取两个结点 f 1 ,   f 2 ∈ V ( G ∗ ) f_1,\ f_2 \in V(G^*) f1, f2V(G) f 1 f_1 f1 f 2 f_2 f2 之间存在边 e e e 当且仅当 f 1 f_1 f1 f 2 f_2 f2 G ′ G' G 中有一条公共边,则称 G ∗ G^* G G G G对偶图

求平面图 G G G 的一个平面嵌入 G ′ G' G 所对应的对偶图 G ∗ G^* G 的一般步骤如下:
(1)对于图 G G G每个面 r i r_i ri ,在 r i r_i ri 的内部作一个结点 v i ∗ ∈ V ( G ∗ ) v_i^* \in V(G^*) viV(G)
(2)对于任何两个面 r i ,   r j r_i,\ r_j ri, rj 的每一条公共边界 e k e_k ek ,都作一条与 e k e_k ek 相交的边 e k ∗ = { v i ∗ ,   v j ∗ } ∈ E ( G ∗ ) e^*_k = \{ v_i^*,\ v_j^*\} \in E(G^*) ek={vi, vj}E(G)
(3)当 e k e_k ek 仅是面 r i r_i ri 的边界时,给 v i ∗ v_i^* vi 作一条与 e k e_k ek 相交的自回路 e k ∗ = { v i ∗ ,   v i ∗ } ∈ E ( G ∗ ) e^*_k = \{ v_i^*,\ v_i^*\} \in E(G^*) ek={vi, vi}E(G)

图7.6.3给出了由图 G G G 构造其对偶图 G ∗ G^* G 的一个实例,其中,图 G G G 的结点和边分别用 ∘ \circ 和实线表示,而它的对偶图 G ∗ G^* G 的结点和边分别用 ∙ \bullet 和虚线表示:

由对偶图的定义可知,一个连通平面图 G G G 的对偶图 G ∗ G^* G 也是平面图, G ∗ G^* G 的对偶图是 G G G ,并且一个平面图的不同平面嵌入,可能得到不同的对偶图。

1890年,希伍德就证明了,任何连通简单平面图都是可 5 5 5-着色的。下面给出其证明过程——定理7.6.3和定理7.6.4。

定理7.6.3 G = ⟨ V , E ⟩ G = \langle V, E\rangle G=V,E 是一个连通简单平面图,且 ∣ V ∣ ≥ 3 ,   ∣ E ∣ = m |V| \ge 3,\ |E| = m V3, E=m ,则 G G G 中必存在结点 u ∈ V u \in V uV ,满足 d e g ( u ) ≤ 5 deg(u) \le 5 deg(u)5
证明 假设 G G G 中所有结点的度均大于等于 6 6 6 。因为 ∑ v i ∈ V d e g ( v i ) = 2 m \displaystyle \sum_{v_i \in V} deg(v_i) = 2m viVdeg(vi)=2m ,故 2 m ≥ 6 ∣ V ∣ 2m \ge 6|V| 2m6V ,所以 m ≥ 3 ∣ V ∣ > 3 ∣ V ∣ − 6 m \ge 3|V| > 3|V| - 6 m3V>3V6 。这与定理7.5.3的结论矛盾。因此, G G G 中必存在结点 u ∈ V u \in V uV ,满足 d e g ( u ) ≤ 5 deg(u) \le 5 deg(u)5

定理7.6.4(希伍德五色定理)任一连通简单平面图 G = ⟨ V , E ⟩ G = \langle V, E\rangle G=V,E 都是可 5 5 5-着色的。
证明 对图 G G G 中的结点数进行归纳。
(1)当 ∣ V ∣ ≤ 5 |V| \le 5 V5 时,结论显然成立。
(2)假设当 ∣ V ∣ = k |V| = k V=k 时结论成立, k ≥ 5 k \ge 5 k5
(3)考察 ∣ V ∣ = k + 1 |V| = k + 1 V=k+1 时的情况。由引理知, G G G 中必然存在结点 u ∈ V u \in V uV ,满足 d e g ( u ) ≤ 5 deg(u) \le 5 deg(u)5 。将结点 u u u 从图中删去得到图 G − u G - u Gu 。由归纳假设知, G − u G-u Gu 可用 5 5 5 种颜色正常着色。现将 u u u 放回从而恢复原图 G G G ,分情况讨论:
d e g ( u ) < 5 deg(u) < 5 deg(u)<5 ,或 d e g ( u ) = 5 deg(u) = 5 deg(u)=5 但与 u u u 邻接的 5 5 5 个结点所着颜色的数目小于 5 5 5 ,则在 G − u G - u Gu 所用 5 5 5 种颜色中,只要选择一种 u u u 所邻接的结点未着的颜色进行着色即可;
d e g ( u ) = 5 deg(u) = 5 deg(u)=5 ,且与 u u u 相邻的 5 5 5 个结点着了 5 5 5 种不同的颜色。不妨设使用红色、黄色、蓝色、白色、黑色这五种颜色,对图进行着色,如图7.6.4所示:

约定图 G − u G - u Gu 中所有着红色或黄色的结点集为红黄集 G − u G - u Gu 中所有着黑色或白色的结点集为黑白集,有以下两种情况:

  • v 1 , v 3 v_1, v_3 v1,v3 属于红黄集导出的、 G G G 的子图的、两个不同的连通分支。如图7.6.5所示,将 v 1 v_1 v1 所在分图中的红、黄色对调,并不影响 G − u G - u Gu 的着色;再将结点 u u u 着上红色,即可对图 G G G 进行正常着色,如图7.6.6所示:
  • v 1 , v 3 v_1, v_3 v1,v3 属于红黄集导出的、 G G G 的子图的、同一个连通分支,则 v 1 , v 3 v_1, v_3 v1,v3 之间必有一条由红黄集中结点构成的路 P P P ,它加上 u u u 可构成一个回路 C ( u , P , u ) C(u, P, u) C(u,P,u)由于 G G G 是平面图,因此,回路 C C C 会将黑白集分成两个子集,一个在 C C C 内,另一个在 C C C 外,如图7.6.7所示。这样,黑白集导出的子图至少有两个分图,从而将问题转换为上一类问题——将 v 2 v_2 v2 所在分图中的黑白色对调,并不影响 G − u G - u Gu 的着色;然后将结点 u u u 着上白色,即可对图 G G G 进行正常着色。

定理7.6.5(四色定理)平面图的色数不超过 4 4 4
关于该定理的证明,可参考相关文献。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值