本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- (国外经典教材)离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
,袁崇义译,机械工业出版社- 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
7.6 图的着色
与平面图密切相关的一个重要问题是图的着色问题:
历史简介:
- 1852年,英国大学生格思里
Guthrie
通过观察地图着色,提出了四色猜想,即仅用四种颜色就能对地图着色、使得相邻国家着色不同。- 1879年,肯普
Kemple
发表了一篇论文,宣称自己完成了四色猜想成立的证明。肯普的证明方法很巧妙,人们普遍相信此问题已圆满解决。- 1890年,希伍德
Heawood
发现肯普的证明是错误的,但借用肯普的技巧证明了五色定理。- 此后的几十年时间里,虽然不少人在四色猜想上耗费了大量精力,但依然一无所获。
- 直到1976年,美国伊利诺伊大学的肯尼斯·阿佩尔
Kenneth Appel
和沃尔夫冈·哈肯Wolfgang Haken
给出了四色猜想为真的机器证明,该证明过程在计算机上运行了1200多个机时,完成了一百多亿次逻辑判断。
图的着色分为结点着色和边着色两种,下面仅介绍关于图的结点着色的概念和基本理论。
7.6.1 图的结点着色
定义6.1.1 设 G = ⟨ V , E ⟩ G = \lang V, E\rang G=⟨V,E⟩ 是无向图,给图 G G G 中的每个结点指定一种颜色,若满足两个邻接的结点着色不同,则称为图 G G G 的结点正常着色 proper coloring
。如果可以用 k k k 种不同的颜色给图 G G G 的结点正常着色,则称 G G G 是结点可 k k k-着色的 k-colorable
。对图的结点正常着色所需要的最少的颜色数,称为 G G G 的顶着色数,简称为色数 chromatic number
,记为 χ ( G ) \chi (G) χ(G) 。色数为 k k k 的图称为 k k k 色图。
用韦尔奇·鲍威尔 Welch Powell
法,可对任意图 G G G 的结点进行正常着色,该方法的步骤如下:
- 将图 G G G 中的结点按度数递减的次序进行排列。当然,如果有相同度数的点,这种排列是不唯一的,但不影响算法的最终结果。
- 用一种与已着色结点所着颜色不同的、新的颜色 C C C ,对排列最靠前的、尚未着色的结点着色。再按排列次序,对与前面已着上颜色 C C C 的结点均不邻接的每一结点,着同样的颜色 C C C 。
- 反复重复步骤2,直到所有结点全部着色为止。
【例1】分别对图7.6.1所示的图 G G G 和 H H H 中的结点进行正常着色。
解:(1)用韦尔奇-鲍威尔法对 G G G 进行着色,整个过程如图7.6.2所示。
首先将 G G G 中结点按照度数由大到小排序,得到序列 { b , c , d , e , f , a , g } \{ b, c, d, e, f, a, g\} {
b,c,d,e,f,a,g} 。然后,将结点 b b b 着上红色,并且将与 b b b 不邻接的结点 f f f 也着上红色,注意 g g g 与 b b b 不邻接、但与 f f f 邻接, f f f 已着上红色,所以 g g g 不能着上红色;其次,将结点 c c c 着上黄色,并将与 c c c 不邻接的 e e e 着上黄色;接下来,将结点 d d d 着上蓝色,并将与 d d d 不邻接的 a a a 着上蓝色, g g g 与 d d d 和 a a a 均不邻接,因此它也可以着上蓝色。这样,整个着色过程就结束了, G G G 是可 3 3 3-着色的。
(2)对于图 H H H 可用与 G G G 同样的着色过程,只是在对结点 g g g 着色时,因为 g g g 与 a a a 邻接,所以它不能着蓝色,必须使用一种新的颜色对其着色,因此 H H H 是可 4 4 4-着色的。
利用图的色数可以解决很多现实问题,例如,学校期末考试安排各门课程的考试时间时,不能把同一位学生选修的两门课,安排在同一个时间考试。我们可将每门课程抽象为一个结点,如果两门课程有同一个学生选修,则在这两个结点间连上一条边,构成图 G G G 。如果 G G G 的色数为 k k k ,那么相同颜色的课程可以在同一时间开考,所需考试的最小次数即为 k k k 。不难发现,考试次数的上界是「学生选修的最多课程数+1」。
定理7.6.1 任何图 G = ⟨ V , E ⟩ G= \langle V, E\rangle G=⟨