【离散数学】集合论 第四章 函数与集合(4) 复合函数与逆函数

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 国外经典教材)离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen ,袁崇义译,机械工业出版社
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
  • 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
  • (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
  • 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社


4.4 复合函数与逆函数

4.4.1 复合函数及其性质

关系可以进行复合运算,函数是一种特殊的二元关系,所以也可以进行复合运算。复合是获得新函数的常用方法之一

定义4.4.1 f : X → Y f: X \to Y f:XY g : Y → Z g: Y\to Z g:YZ 是函数,令:
g ⋄ f = { ⟨ x , z ⟩ ∣ x ∈ X ∧ z ∈ Z ∧ ( ∃ y ) ( y ∈ Y ∧ f ( x ) = y ∧ g ( y ) = z ) } g\diamond f = \{ \langle x, z\rangle \mid x\in X \land z \in Z \land (\exist y)(y \in Y \land f(x) = y \land g(y) = z)\} gf={ x,zxXzZ(y)(yYf(x)=yg(y)=z)} 则称 g ⋄ f g\diamond f gf f f f g g g复合函数,称 ⋄ \diamond 复合运算

注意, f f f g g g 的函数复合表示为 g ⋄ f g \diamond f gf ,而 f f f g g g 的关系复合表示为 f ∘ g f \circ g fg ,二者的结合顺序恰好相反,函数复合采用的是从右往左复合的方式,简称左复合。复合函数 g ⋄ f g \diamond f gf 与复合关系 f ∘ g f\circ g fg 的次序不一样的原因是,为了和微积分中复合函数的习惯记法保持一致,如 sin ⁡ ln ⁡ x \sin \ln x sinlnx 中先求 ln ⁡ x \ln x lnx ,再求 sin ⁡ ( ln ⁡ x ) \sin (\ln x) sin(lnx)

定理4.4.1 f : X → Y f : X\to Y f:XY g : Y → Z g: Y\to Z g:YZ 是函数,则 g ⋄ f g\diamond f gf 是从 X X X Z Z Z 的函数
证明 g ⋄ f g \diamond f gf 显然是从 X X X Z Z Z 的二元关系,现证明任取 x ∈ Z x \in Z xZ ,存在唯一的 z ∈ Z z \in Z zZ 使得 ⟨ x , z ⟩ ∈ g ⋄ f \langle x, z\rangle \in g\diamond f x,zgf
任取 x ∈ X x \in X xX ,因为 f f f 是从 X X X Y Y Y 的函数,所以存在唯一的 y ∈ Y y \in Y yY 满足 f ( x ) = y f(x) = y f(x)=y ,即 ⟨ x , y ⟩ ∈ f \langle x, y\rangle \in f x,yf 。又因为 g g g 是从 Y Y Y Z Z Z 的函数,所以存在唯一的 z ∈ Z z \in Z zZ 满足 g ( y ) = z g(y) = z g(y)=z ,即 ⟨ y , z ⟩ ∈ g \langle y, z \rangle \in g y,zg 。因此,对任一 x ∈ X x \in X xX ,均存在唯一的 z ∈ Z z \in Z zZ ,使得 ⟨ x , z ⟩ ∈ g ⋄ f \langle x, z\rangle \in g \diamond f x,zgf 。所以,复合函数 g ⋄ f g \diamond f gf 是从 X X X Z Z Z 的函数。

为了方便,如果 f : X → Y ,   g : Y → Z f: X \to Y,\ g: Y\to Z f:XY, g:YZ 是函数,则 ⟨ x , z ⟩ ∈ g ⋄ f \langle x, z\rangle \in g \diamond f x,zgf ,记为 ( g ⋄ f ) ( x ) = g ( f ( x ) ) = z (g \diamond f)(x) = g(f(x)) = z (gf)(x)=g(f(x))=z

【例1】设 X = { 1 , 2 , 3 } ,   Y = { p , q } ,   Z = { a , b } X = \{1, 2, 3\}, \ Y = \{p, q\},\ Z = \{a, b\} X={ 1,2,3}, Y={ p,q}, Z={ a,b} 。从 X X X Y Y Y 的函数 f = { ⟨ 1 , p ⟩ , ⟨ 2 , p ⟩ , ⟨ 3 , q ⟩ } f = \{ \langle 1, p\rangle, \langle 2, p\rangle, \langle 3, q\rangle \} f={ 1,p,2,p,3,q} ,从 Y Y Y Z Z Z 的函数 g = { ⟨ p , b ⟩ , ⟨ q , b ⟩ } g = \{ \langle p, b\rangle, \langle q, b\rangle \} g={ p,b,q,b} 。求 g ⋄ f g \diamond f gf
解:如下图所示,可得:
g ⋄ f = { ⟨ 1 , b ⟩ , ⟨ 2 , b ⟩ , ⟨ 3 , b ⟩ } g \diamond f = \{ \langle 1, b\rangle, \langle 2, b\rangle, \langle 3, b\rangle \} gf={ 1,b,2,b,3,b}

【例2】设 R R R 为实数集合,对 x ∈ R x \in \R xR f ( x ) = x + 2 ,   g ( x ) = x − 1 f(x) = x+2,\ g(x) = x - 1 f(x)=x+2, g(x)=x1 ,求 g ⋄ f g\diamond f gf
解:任取 x ∈ R x \in \R xR x x x 在函数 f f f 下的映像 f ( x ) = x + 2 f(x) = x + 2 f(x)=x+2 ,而 x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值