自回归滑动平均(Auto Regressive Moving Average Model,ARMA)模型

自回归滑动平均(ARMA)模型是AR和MA模型的组合,用于描述复杂数据动态结构。模型的平稳性由特征根的模小于1来保证。识别ARMA模型阶次通常通过PACF和ACF截尾判断,以及信息准则如AIC进行定阶。最终,模型的建立和预测遵循与AR和MA模型相似的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在有些应用中,我们需要高阶的AR或MA模型才能充分地描述数据的动态结构,这样问题会变得很繁琐。为了克服这个困难,提出了自回归滑动平均(ARMA)模型。
基本思想是把AR和MA模型结合在一起,使所使用的参数个数保持很小。

模型的形式为:

 

其中,{at}为白噪声序列,p和q都是非负整数。AR和MA模型都是ARMA(p,q)的特殊形式。

利用向后推移算子B,上述模型可写成:

 


(后移算子B,即上一时刻)
这时候我们求rt的期望,得到:


和AR模型一毛一样。因此有着相同的特征方程:


该方程所有解的倒数称为该模型的特征根,如果所有的特征根的模都小于1,则该ARMA模型是平稳的。

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值