时间序列分析方法之 -- 自回归积分移动平均模型(Autoregressive Integrated Moving Average, ARIMA)原理及python代码示例

目录

原理

适用情况

Python 示例代码

结论


原理

自回归积分移动平均模型(Autoregressive Integrated Moving Average, ARIMA)是时间序列分析中的一种广泛应用的模型。ARIMA 模型结合了自回归(AR)、差分(I)和移动平均(MA)三种模型的特点,适用于非平稳时间序列的数据建模和预测。

ARIMA 模型的一般形式表示为 ARIMA(p, d, q),其中:

  • p:自回归(AR)项的阶数,表示当前值与过去 p 个值之间的关系。
  • d:差分(I)次数,表示使时间序列平稳所需的差分次数。
  • q:移动平均(MA)项的阶数,表示当前值与过去 q 个预测误差之间的关系。

ARIMA 模型的数学表达式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值