自回归(Autoregressive Models,AR)模型

本文介绍了自回归AR(p)模型,包括AR(1)模型的定义,特征根与平稳性检验,以及如何通过偏相关函数和信息准则(AIC、BIC、HQ)进行模型定阶。同时,讨论了模型的检验、拟合优度评估以及预测方法,强调了防止过拟合的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知在t−1时刻的数据rt−1,在预测t时刻rt时可能是有用的!

根据这点我们可以建立下面的模型:

 


其中{at}是白噪声序列,这个模型与简单线性回归模型有相同的形式,这个模型也叫做一阶自回归(AR)模型,简称AR(1)模型

从AR(1)很容易推广到AR(p)模型:

 

AR(p)模型的特征根及平稳性检验

我们先假定序列是弱平稳的,则有;

 


因为{at}是白噪声序列,因此有:


所以有:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值