FPGA机器学习之机器学习的n中算法总结1

本文主要探讨了在机器学习领域中的几种算法,包括退火算法(SA)、Fea-G算法、DANOVA算法、SOA算法和射门算法。退火算法在图像识别,尤其是神经网络优化中有重要应用,而其他算法如Fea-G、DANOVA和SOA缺乏相关资料。射门算法实际上与机器学习无关,更多涉及机器人足球比赛。机器学习在视觉领域的应用是作者关注的重点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习是AI领域的重要一门学科。前面我描述过,我计划从事的方向是视觉相关的机器学习分类识别,所以可能在每个算法的分析中,只加入在视频,视觉领域的作用。

我毛华望QQ849886241。技术博客http://blog.csdn.net/my_share   

 SA算法,Fea-G算法,DANOVA算法,SOA算法,Shooting算法。这个是从网页中,百度说他们特有的算法。

        Fea-G算法,DANOVA算法,SOA算法,没有任何资料。

         shooting算法,叫射门算法(百度和必应的结果)。但是射门算法,并不是机器学习算法。可能是百度自己创建的算法,命名重名了而已,或者是改进,所以并没有公开所以没有任何资料。但是我还是解释一下,所说的射门算法的意思。射门算法,无论是百度还是论文都是设计到机器人足球比赛的。这个真的是射门算法。

机器人在R点,球在B点。那最好的射门算法就是,计算出0点,然后运行机器人行走路线为弧C。然后射门AG路线。这个就是射门算法。和机器学习无关。所以实际应该不是这个。

        SA算法,也叫退火算法。和梯度下降法的意义是一样的。就是一种逼近模型。其实是一种2个函数逼近算法。其中一个函数,可能是离散的点,或者是半截函数,这是目标函数。我现在就用一个函数去逼近那个函数,两个函数之间的误差,到某个程度就逼近完成了。为了保证有比较优的解,算法往往采取慢降温、多抽样、以及把“终止温度”设的比较低等方式,导致算法运行时间比较长,但是从查找到的资料来看,它可以改进神经网络࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值